TASK: URA40
CDRL: 01210

UR40 — Repository Integration
giie FiLE COBY AdaTAU Software
User’'s Manual

Informal Technical Data

—r
7

AD-A229 221

STARS-RC-01210/003/00

25 October 1990 __ DTi

ELECTE

Form Approved

REPORT DOCUMENTATICN PAGE e e e

Pubne 12OC™ AL DUTOEF TUF TNy ICIECTION OF AIOI™MELIOR 13 S4LIMATEY IC AveraQe ° “Cul DEr “MyDIFYE. NLIUGI=G The UMme tor FevIEwIng INSITUCTIONS. SELICUNE € 41:r 2 Cata SOUTCes
QaTRETing gng MaNtENING ThE At Acraed. aNC COMDIELING ANG review: A the (CHIECHION OF NISrMINION SN0 COMMENTs rEQuraINg thy Durgen SAUIMate Or 3N, TRET J3DECT O thyy
CCNEION 14 A'QrMILCT INCLAING SugYtiony 107 requaing this Durgen 1o WashINGION Mesogubien Yerv.cey. Oirectorate 10: wnf2rmavion Qoeraticny ang Reoorts 1215 JeHeryyr
Dasytngtaay Suite 1004 arhingten VA 22232.4302 anu tC tre Ofice 9 Mansgement ana Busje: Pader ~cre Redultion Oroject (0704-0188). wastengran. D 20503

1. AGENCY USEt ONLY (Leave blank) §2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
26 Qctober 1990 Final
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Reusability Library Framework (RLF) Librarian
User's Manual ’ STARS Contract
F19628-88-0-0031
6. AUTHOR(S)

James J. Solderitsch
Ray MecDowell

7. PERFQRMING ORGANIZATION NAME(S) AND ADDRESS'ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER
Unisys Corporatio ’
4 poration GR-7670~1169 (NP}

12010 Sunrise Valley Drive
Reston, VA 22091

9. SPONSORING MOCNITQRING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING - MONITORING
AGENCY REPORT NUMBER

Department of ths Air Force
Headquarters, Electronic Systems Division (AFSC)

01210 Volume III
Hanscom AFB, MA 01731-5000 210

11. SUPPLEMENTARY NOTES
There are two other related rReusabiilty Library framawcrk (RLF) reports:
(RLF) AdaTau User's Manual and (RLF) AdaKNET User's Manual

12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION COCE

Approved for public release;
distribution is unlimited

ZXEN

13. ARSTRACT (Maximum 200 words)

while librarians are not the only sorts of applications that have

been built with the RIF, they are the applications that moiivated the
initial development of the RLF. This manual describes a demonstraticn
librarian built for the domain of Ada benchmark programs. This
application is typical of many RLF applicatiens in that it uses

a hybrid knowledge reprosentat.on system incorporating an integrated
form of AdaTAU and AdaKNET. The manual provides a librarian system
overview and provides an annctated sample usage session. The manual
also presents the hybrid knowledge base description language

used to connect AdaKNET and AdaTAU.

14, SUBJECT TERMS 15. NUMBER OF PA/ES
Librarian Svstem Qverview 77
Librarian System Compunents 16, PRICE CODE

Using the Librarian

17, SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclass;fied Unclassif_ ed Unclassified SAR

= — ——— -m . A QM.

TASK: UR40
CDRL: 01210
26 October 1990

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Revsability Library Framework (RLF)
AdaTAU Softwarc
User’s Manual

STARS- RC-01210,/003/00
Publication No. GR-7670-1171(NP)
26 October 1990

. r{‘.—\.-.m».l |nr-1-xnir-n\ Nato
S, i1 Hvsiciar aoliluitdr 1/7auvd
J1I]

CONTRACT NO. F19628-88-D-0031
Delivery Order 9002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

A
! Distﬂbutio&imiteﬂﬂto /
U‘-S. G ernrf‘nent_,and_.U.S. overnment

1 ,,'ijntfacto : oyly: J
Ll ‘ by
t}dm istrative (2COctobdp 199

TASK: UR40
CDRL: 01210
26 QOctober 1990

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reusability Library Framework (KLF)
AdaTAU Software

User’s Manual

STARS-RC-01210/003/00
Publication No. GR-7670-1171(NP)
26 October 1990

Data Type: A005, Informal Technical Data
CONTRACT NO. F19628-88-D-0031

Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 0173.-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22001

o PREFACE

This document was prepared by Unisys Defense Systems, Valley Forge Operatous, in support
of the Unisys STARS Prime contract under the Repository Integration task (Un 40). This
CDRL, 01210, Volume III, is type A0O5 (Informal Technica! Data) and is entitled "AdaTAU
Software User’s Manual”.

Thiz document has been reviewed and approved by the following Unisys personnel:

UK40 Task Manager: Richard E. Creps

Reviewed by: /)’{ /“‘V/(7, 4‘/ o FTR

Teri F. Payton, Systcm' Archiiect

Approved by: AIL R, 44 / L"\—\

o “f r)n‘ rar aram }F n oo

6 ATNJALALy A l\.lblu.l vaRIIM ol

Accoessien For

TETIS GRARI o |

 ITIC TAB I
; Unaanommeed |

........ —————

1‘ Dx trtbatlon/ 7

A\ 'x lubnlw Cle@‘i

1 a1l cod/or
K/' vst | Spociul
A
| l
P } i N

1. 5COPC ovvenrersresnns

Table of Contents

...
..
--

..

3. A4aTALI SYStEm OVEIVIEW ...coeinieieiciesnencosissssissiisin s st s srss s s snssassas s asasansans
3.1. Basic ArchiteClural FEAMITESccccveceervrrremieernersimermsssissrsmissssicsnsssssssssaressonsessssessansanssaess
3.2. Fundamental Architectural EIBMENLS ..ot sececissctsnescsssessnssnsssasnssiens
4. AdaTAU System COMPONCIILScveereerrentriessntssismessesssssesissssssassassssssiosssssassnssssssssisssessessasass

4.1, FaCts ...coovveeevvenns
4.2. Faci Lists

4.3. Fact Value Lists

4.4. Fact Schemas ...

...

..

...

..

4.5, FACl BASE SCHEMAS veiivevvereviviirerenieeeisiinnesssssinisstassssarssrassesarsnssossensessssenteiesssatesssressesssasae

4.6. Fact Bases

4.7. Fact Parameters

4.8. Fact Parameier Lists
4.9. IRules
4.10. FRules
4.11. QRules............
4.12. Questions

...

..

...

..

...

L R R L Ty T T L R T R L PP Y LR

...

4.13. RESPONSE SCHCITLAS ...veeeverievrererrrsnenesrronmerssosressssnsesssassnsssressasssssssstessis anssnsassssarsrssssesnses

4.14, Rule Bases
4.15. Agendas

..

..

4.16. Basic AJaTAU CONIGUIRLONcoevieivririmriniscniininssnn e s sssnssssssssessssssssssesssaress
4.17. Generic Advanced AGATAU CONMZUTALION ..c..ccvrivrrerrenrininesamrinmeseessnisreseismsreneen
4.18. RLF Instance of Advanced AJaTAU Configurationccevieinininisnsniennn
4.19. Component Persistance Managemen! ...,
4.20. Basic AdaTAU Persistance Managementcoccveecirireevnins seeemssnnisrsssesssss s esssanes
4.21, Distributed AdaTAU Persistance Managementccvveniimiinieienismmeneees
4.22. Reverse RBDL TranSIator ..o veeeeiceenene e eeresteeceesesieessiassseesssssasssssessssessansossssssnsaass
4.23. AdaTAU Infercnce Cycle COMPONEIILSccvcvrreririnssersnmssreserissnicsenssnsmsasssssstsssasssssssnes
4.24. Distributed AdaTAU Inference Cycle COMPODNENLSccervieinimmsnisnisninisnesmsassasnsennes
4.25. AGaTAU BasiC INFEICNCEc.creerccerenrerecisetisssnsssssssesrassesessorassaesaissssnssansennssessosses
4.26. Distributed AdaTAU INfETENCEcoviriiniisscrsssnsnseneiisassnsssenisissmeimsisssssssans
5. AdaTAU Specification Language — RBDLciviininsneniessenines

6. Using AdaTAU ...

...

6.1. Creating AdATAU Knowledge Basescovvininsiinninnime o
6.2. Building an AJaTAU APPUCALONcovvvuvriverivereseniseiinessrissiennsn s sesssnsssenesssssans
6.3. Sample Session

..

[- SR PV S N

LI W W WRRDRNNDRN

45

-

I
50
52
54
36
59
60
62
63

65
66
67
68
69
72
73
74
75

T INOLES srvreerrcnsercrreirniensarsranessnsenesnnrssentersaressesesosserbess sossssaasstsostaosaqanesonesssns sns et sresonennnssseses H
T0.FACKS 1vvireerisresressrireesssssasessanserssssassessensensasansssasaseansssessesnssserssessisutsnnssascrsss ot asssarnartsssnssesaons 81
T2 RUIES ..ccvecrveeierirrrecssressseessarorseossssssrssraossanssesnseesmesssnsssssesnseansbussonst assns ioshesostassnassotosontosss 81
T3 INFEIEIICEeeiiieieceeeeeeiirereiessecesteeeseesaeser e s bantesssasstastesenatsbsonn st tess bass senasrnasenens srnassnssns 82
T4, GLLOSSARY ..o ceeeeeeerientererenresnsessessesesseseasasssessssesssassnsssner ssssnesasssnsse et asns srnnerossnanserae 84

Appendices

A. RBDL Syntax and SUMMATYc.cccoreninriereircrencimensninmmssisssmarmssisssenm snsnssesassassessssnsssases A-1
A.1. Extended BNF (EBNF) Meta-SYMDBOLScccovveeisiniesamuimarmsisssesissemasssnssssionseins
A.2. RBDL EBNF and SEMANUCS ..vieeceriiviereennierssmseesesiossreenmsnsstosarssorsrsenssomsastessosstsnisasssnsss
A.2.1. AJATAU SPECIICAUON ..cuvevreerneerrrriecnrveserstiaassesssesnosssinasssessasssssssissastasmasesnsrassmsassassasses
A.2.2 Local Inferencer DefiIIIONccocceeeriirireeveeerensienseeestarsssssseesascsssserssssormssssassasses
A.2.3.Fact Base Schema Definitioncccververrireresisscnnenneemmmemasensersor s siessenaies
A.2.4. Factbase DefiNItiONccccovieeieiieciiiiiireirecmesrersesestnrisnrs sostavosass seanasssissssnsstasssnasnsanssins
A.2.5. Irulebase DEfiNILIONccciuerrneireirecsnisnssirassssssnsrsesssesmasnmsisssssssessnsnseassnesesssonises
A.2.6. Questionbase DEfiMIIONcceeeivcererrseeseereeirseserrassererssesssesssssassarsasssatsessssssesassasagassess
A.2.7. Qrulebase DEfINILIONccccveeveiieeriiveresersrsressiranmressesaisasssatsssssnsssssearsasrssstsssssesamaessasses
A.2.8. Frulebase DefiflitIONccooeeueemieeieieeecrereneeceseaessnssencasesensssaressesasensessesssssrsssssassnsnses
A.Z.9, INTErenCer DIEMNITON ..ocuicieiiccieicecrieeeseesee s e eiese st e i sanssasesssseaessnsesrresssnten s0estvesssacsnasosons
ALZT0.FACE «.coviviireitnereseereriestrsarassaesnessnssesnesessessnssssnsssssneassanen snos seoss shassasosast snstossaresanssssosns
A2 11, 1exiCal EICINENLS coeeerererenesiesssrssesseeersneseessesssnesenetoasssnsssnsnsssarssssssssensissssrsnnsans 8
A.3. RBDL EBNF SYNI2X SUMIMATY ..ccveerervecnersesssrsnsssassasssassesesssossomsasssarsrvsrsssessasasessssosses 8
B. RBDL Extended EXAMPIEooveeiireiiecrrineieieritiiecssneineieesscsseninss ssiisesmesssssssesrasssssssaas B-1

S OO W B B LN e e e

~

References

Table of Figures

Figure 1. AdaTAU Layered Abstractions
Figure 2. Basic AdaTAU Inference
Figure 3. Distributed AdaTAU Inference ...

...

...

...

Figure 4. Basic AdaTAU Component TaXONOMYccccvveune weverinrivanensersassmeinorensmsesassasens
Figure 5. Creating an AdaTAU Application

...

15
17
23
72

AdaTAU User s Manual 1

' 1. Scope

This document assumes that the user has a basic understanding of the Ada language
and wishes to learn how to incorporaic knowledge-based capabilities into a larger sys-
tem.) This document is not tutorial in nature with regard to the Ada language, nor does it
cover basic material from the field of Artificial Intelligence (Al). In fact, some of the
fyndamental features of the system described in this manual are based on ideas described
in the Al literature. The intcrested reader is referred to one of thc many texts on Ada or
Al in particular, the Ada Language Reference Manual [LRM83] and The lHandbook of
Artificial Intelligence, Volume 1[Barrf1].

1.1, Identification

This Software User’s Manual provides a description of the content and basic operat-
ing procedures of AdaTAU, a subsysiem level component of the Reusability Library
Framework (RLF). Other major components of the RLF include AdaKNET, and the
Librarian application, which are covered in separate user’s manuals. AdaTAU provides
knowledge representation and inferencing capabilities via rule and fact base abstractions,
anc an associated control strategy that supports the extension of fact bases following the
application of rules drawn from the rule bases. AdaTAU is made up of various packages
providing Abstract Data Types (ADTs) that form the basis for the collection of services
and objects provided within AdaTAU. This manual describes the individual package
level components, as well as the major operations and objects defined within ‘cach com-

0 onent. - / /\/ ﬁ) Q_,/

1.2. Purpose

¥ ~— The purpose of AdaTAU is to provide a rule-based knowledg¢ representation capa-
" bility within the RLF and to serve as a stand-alone subsystem thgt can be incorporated
into larger Ada systems which require a rule-based component. /Rule bases provide a
declarative form of knowledge (or heuristics) that human “experts” use to make decisions
within a current knowledge context. Such rules can be used to manage volatile informa-
tion and make decisions consequent to this information which is gamered during the pro-
cessing of other external data structures or through general interaction with a user. One
example of such an external data structure is a semantic network such as the ones pro-
vided by the AJaKNET subsystem of the RLF. This static information is supplemented
by information recorded as simple facts that are collected into fact bases. The current
version of AdaTAU stores facts as simple attribute-value pairs. |

Facis are used as input values tv collections of rules organized into rule bases by

AdaTAU. Rules whose input facts are all noted to occur within the current fact base will 1

‘ be “fired” with the result that new resultant facts can be added to the fact base and old ‘
A facts can be removed. AdaTAU both maintains a collection of facts, and manages a col-
- lection of rules, througk which information can be passed to an application which is pro-
‘ cessing its own data. AdaTAU can also direct a sequence of interactions with the user
“ by posing questions to the user and receiving answers which cause changes to an Ada-
' TAU fact base. In addition, this version of AdaTAU supports the partitioning of rule
e bases into focused “inference contexts” and includes rules that direct inference focus o

the proper context.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 2

1.3. Introduction

The remainder of this document is organized as follows. Section 2 lists a few par-
ticular refcrence works that have particular relevance to this document. Section 3 con-
tains an overview of the AdaTAU system including separate views of the basic architec-
tural features of AdaTAU and the fundamental ¢lements of AdaTAU that contribute to
these features. The former view presents a coarser-grained look at the AdaTAU system
useful for Ada programmers who have some familiarity with rule-based systems and
therefore can read the underlying Ada package specifications directly. The latter view
provides more detail and explanation for those who are less experienced with Ada and
knowledge-based programming. In section 4, a complete treatment of the AdaTAU
package ievel components is given. Within each subsection detailing an individual pack-
age, the collection of basic objects, types and operations that make up the package are all
covered separately. Section 5 presents a description of the knowiedge base declaration
language used to describe schemas for individual fact and rule bases and state facts that
initialize particular fact bases. A hands-on view of AdaTAU, covering the steps neces-
sary to integrate AdaTAU with other subsystems, is presented in section 6 including the
use of AdaTAU’s static description language to tailor AdaTAU to a particular application
domain. Finally, section 7 provides some general background information about the con-
cepts and terras used in this document. Section 7 also includes a glossary of important
terms, acronyms and abbreviations.

Reusability Library Framework AdaTAU 08 Jumne 1990

AdaTAU User’s Manual

2. Referenced Documents

In addition to the Ada LRM, and the Al Handbook referenced earlier, the following
documents arc useful as references in conjunction with this document. Documents
marked with an asterisk (*) were delivered to the Naval Research Laboratory as part of
the original STARS Foundation contract (number N00014-88-C-2052) that supported the
initial development of the RLF.

(*) Reusability Library Framework AdaKNET/AdaTAU Design Report.
(*) Gadfly User’s Manual.

AdaKNET User’s Manual.

Librarian User’s Manual.

The RLF Librarian: A Reusability Librarian Based on Cooperating Krowledge-
Based Systems [McDowell89].

The Growing of an Organon: A Hybrid Knowledge-Based Technology and Metho-
dology for Software Reuse [Simos88].

Construction of Knowledge-Based Components and Applications in Ada
{Wallnau88].

Constructing Domain-Specific Ada Reuse Libraries [Sclde:.«+ heJ].

Reusability Library Framework 08 June 1990

AdaTAU User’s Manuai

3. AdaTAU System Overview

AdaTAU is based on TAJ, a Unisys-proprictary production rule-based system that
incorporates un agenda mechanism for directing interaction with & user along with a
forwerd-chaining inference system. Another agenda mechanism is used to manage infer-
encc over a distributed collection of “irference bases” where the inference process spans
the collection. Rule base systems provide a cdeductive capability to generate new infor-
mation based on information already present in the system. Information is stored in the
form of facts that are represented in AdaTAU as attribute, value pairs. Rule bases are
simply collections of rules, eacl: of which includes a list of iacts that must be wue tc
apply the rule, a list of facts to be concluded and/or a list of facts to be retracted when the
rule is applied, Note that one or the other (but not both) of these lists could be empty.

Rule base systems have traditionally been written in Lisp and Prolog. However,
AdaTAU demonstrates that Ada with its strong notions of data typing, data abstraction,
and exception handling is a viable and efficient languzge system that supports this form
of knowledge representation and processing. Ada will allow this component to be nutur-
ally integraied into larger knowledge processing systems that have need of a ruic base
comporent. The underiyi \g pieces of AdaTAU are facts (collected into fact bases), and
rules (collected into rule bases). Rules depend on facts (rule antecedents) and are used to
durive new facts or remove old facts (rule consequents). Through Ada language feztu-es,
we are able to separaie fact bases from the rule bases that modify them. In addition,
AdaTAU provides for schema definitions for both facts and rules that natusally extsnd
the native type checking of Ada.

3.1. Basic Architectural Features

TAU is an acronym made up of the first letters of the phrase that summarizes the
crganization of this component — Think, Ask, Update. Think refers to the analysis of the
fact base whi:h is used to record information about the domain under consideration, and
to the application of 1ules which directly modify this fact base (add or deiete facts for
exampie). Rules considered during this phase may also lead to the scheduling of queries
which will bo procossed subscquently. Ask denotes the capability of posing questions,
and recording responses in answer to the questions, that are scheduled as a result of the
Think phase. Finally, the Update phase will modity the fact base in a manner that
depends on the responses recorded in the Ask phase. The part of AdaTAU executing this
basic inference cycle is called the investigator.

Distributed AdaTAU (DTAU) is an extension of basic AdaTAU (identified as cen-
ralized TAU (or just TAU) in comparison to DTALU) that provides for the localization of
individual rule and fact bases irio separate inference contexts which communicate with
each other through fact parameters. The basic TAU investigator cycle is augmented with
an additional phase that pnicesses rules which help identify possible inference focus
swiiches to more useful contexts. The importing application makes use of a focus
evaluation and TAU invceation cycle to perform inference over the available infexence
contexts.

Some basic architectural featmes of AdaTAU are sumimarized in the following
labeled paragraphs. 1he next section of this manual provides additional background on

Reusability Library Framework 08 Jure 1990

AdaTAU User's Manual 5

these features.

Fact Base Schemas. AdaTAU provides an attribute-value structure for facts, Facts are
thus simply viewed as pairs of properties and values of such properties. However, Ada-
TAU manages the relationship between particular properties and the permitted value sets
that contain values used in particular facts pertaining to the property. AdaTAU defines a
set of fact base schemas tor each application. These schemas restrict the form and value
sets for facts within a particular fact base.

Rule Bases. Rather than providing a single kind of n.le base, three kinds of rules, each
contained in a corresponding rule base, and each supporting a different kind of forward-
chained inference processing relative io a common fact base, have been provided. Other
kinds of rules and rule bases may bc: added in future versions of AdaTAU. For example,
action rules could be defined so application operations (actions) could be invoked with
modification of the fact base depending on the results of the operation. Such a mechan-
ism would enable the application to control and interact with the TAU process.

An JRule (Inference Rule) is a rule which directly affects the fact base, and requires
no input from the user. [IRules are the direct realization of if — then kinds of rules.

A QRule (Question-asking Rule) is a rule which involves the eventual processing of
user input. Depending on a response to a particular question associated with the rule,
other facts can be added to, or deleted from, the fact base. However, before the question
is cven posed to the user, the antecedent facts of the QRule must be precent in the fact
base. AdaTAU separates the scheduling of the question and the asking of the question
and provides for the ranking of the question numerically vhen it is inserted on the
agenda of questions to be asked. In this way the user is presented with the most impor-
tant question first.

An FRule (Focus-suggestion Rule) is a rule that identifies an inference context (typ-
ically bv an application-specific name) where it is likely that the goal of the current infer-
ence process will be served (i.e., additional facts can be deduced). An FRule does not
itself derive any new facts, directly or indirecdy. When an FRule’s antecedent facts are
present in the fact base, the FRule will cause the focus agenda to be modified. Depend-
ing on che weight attached to a focus suggestion, an FRule may lead to the suspension of
inference within the current context, or it may direct attention to an alternate coi.tex:
when nio further inference progress is possible in the current context.

FRules are required only for DTAU. However, through Ada we are able to define a
single rule base data type, and separate rule data types corresponding to each of the kinds
of rules listed above. Rule bases are ¢zfined using the generic construct of Ada, and the
individual rule bases sre defined via instantiations of this generic with each individual
rule type.

Agendas. An agenda is simply a prioritized queue of items where retricvals from the
agenda arc based on an agenda item’s priority or weight. In AdaTAU, interactions with
the user which are scheduled as a result of the firing of QRules are placed within a
scparate agenda that is consultec as AdaTAU executes. Each individual inference con-
text is equipped with its own local agenda. In DTAU, focus switch suggestions resuit
from the firing of FRules, and these ave merged with the current contents of the global
focus agenda. QRules post a question item to a iocal question agenda which the investi-
gator porion of AdaTAU uses to interact with the user in an organized manner. The

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Mgnual 6

question agenda, and questions reirieved from it, is processed during the Ask and Update
phases of TAU. DTAU includes a separate Think-Again phase during which IRules and
FRules are processed in advance of considering a focus switch.

Questions themselves refer to additional schema definitions called response sche-
mas which package the actuai text of the question to be asked of the user along with the
permitied response type that AdaTAU will expect in answer to the question, and the
corresponding fact base modifications attached to each response. AdaTAU checks to see
that included facts conform to the fact base schemas estabiished for each attribute-v..iue
pair. Analogously to the case for rules, the concept of agenda is implemented as an Ada
generic package which is instantiated with an object type representing a particular
agenda possibility, questions. Later versions of AdaTAU will make use of other
instances of the agenda generic.

AdaTAU Layering. In designing and implementing AdaTAU, a layered abstraction
approach has been taken which results in an onion-skin like view (figure 1) of the struc-
ture of AdaTAU. Two onion-skin views are provided for centalized and distributed Ada-
TAU. By iayering the basic services and objects that are required in support of AdaTAU,
we reduce visibility of the underlying support operations that are used internally by Ada-
TAU, and promote and encapsulate the basic higher level operations required to use Ada-
TAU effectively. The core of the onion represents the kemel operations upon which
AdaTAU is based. This kernel includes the basic definitions for facts, fact bases, fact
base scheisas, rules (of tic various iypes), rule bases and agendas. Each basic object and
operations on that object are captured in a single Ada package that implements the
objects as a well-defined abstract data type.

The next layer in the onion-skin picture provides the programmatic interface to the
core features of AdaTAU and is realized as a single package called basic_configuration.
This layer also provides some basic composite operations that relate two or more objects
which are defined in different Ada packages. All of the essential capabilities of AdaTAU
that an application is likely to require are made available through this interface. The
applicatior. need not be concemed with any underlying definitions or implementation
details.

The outer layer of the onion denotes a package that contains the basic operations
required to implement a TAU-style inference capability from the base components con-
structed in the inner layers. An application built using this outer interface is guaranteed
to make proper use of AdaTAU operations, and to be completely independent of any
implementation decisions regarding the basic operations, or any composites that directly
cepend on these operations. In particular, any decisions made about the storage metho-
dology for collections of basic objects (such &s fact and rule bases) are irrelevant as long
as an application utilizes AdaTAU through this outer interface. However, an application
can choose to vse the services of AdaTAU directly as provided in the basic_configuration
package. An alternative inference strategy io the TAU model can be defined from these
middle level operations, At thc lowest level, an application designer can decide to use
the basic operations directly, perhaps providing a family of new composite operations in
the process.

In the case of distributed AdaTAU, an additional layer is introduced between the
application layer and the basic TAU configuration. This layer provides the FRule

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’'s Mapual 7

TAU Application Layer

Composite TAU
Operations

TAU-sryie
Rule Base Inferenc

Centralized

Dhtr!buted
/ TAU App!kaﬂon Layer

Advn;sce@
TAU Conﬂgunt

Basic
TAU Cenfiguration

Disiribuied

ite Of'_’f‘/“’“'

Distributed
TAU-siyle Inference

Distributed

Figure 1. AdaTAU Layered Abstractions

mechanism and basic support for distributed operations and application integration. The
acditional layer makes use of \he basic programmatic interface, but is not incorporated
into the basic interface because the extra definitions and operations are not required for

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manuatl &

the single inference base version. The application is free to provide the means by which
individual TAU contexts are distributed. This layer is implemented in terms of an Ada
generic package thai accepts a basic Ada type and procedure as generic parameters. The
procedure, supplied by the application designer, must produce an inference context based
on particular type values for the type that instantiates the generic type parameter.

3.2. Fundamental Architectural Elements

Information that is managed by AdaTAU comes in two principal forms. Facts are
units of data that represent features and properties of a domain. AdaTAU relies entirely
on facts to capture the what of this domain. Rules, on the other hand, provide a mechan-
ism through which facts can be either added to the collection (the fact base) being
managed by AdaTAU, or deleted from this colleciion. Rules are thus agents of change in
regard to the fact base. In the next subsections, the basic properties of facts, rules and
related structures pertaining to their realization in Ada are discussed. Some additional
background information about facts and rules can be found in section 7.

Facts

Facts are implemented as <attribute, value> pairs (a-v pairs). A simple example is
<operation_status, protetype>. An attribute can be understood to be simply the name of
a property of the domain under consideration. A value for an attribute provides a charac-
terization of that properiy. Both attributes and values are implemented simply as strings,
although AdaTAU provides a significant management component so that instances of
these objects can be restricted and checked for conformance to declared rules for a-v
pairs. Functions are provided to convert attributes and values to strings and vice versa.
This allows the application using the facts package to print and manipulate attributes and
values as strings and to create facts from strings. Two other routines, Get_Arr and
Get_Value are provided to extract the attribute and value, respectively, from a fact.

Fact Lists

Simplc collections of facts as manipulablc structures are required in several places

sln A ~8 AATATT /£ a 1a
ini the uyo;su U1 ndarnu (L., &5 Pnyuum.- Ysts and conclusion lists for r'ulC°) We there-

fore provide a simple fact list structure by instantiating a generic list data structure,
Tau_List, with the type fact. All the routines from the Tau_Lists package can be applied
to fact lists. In addition, the routine Search_Value is provided which returns the value
associated with an attribute of a fact in a fact list.

Fact Bases

Fact bases, viewed in their simplest form, are sets of a-v pairs. For a given domain,
the list of possible attribute values is a finite set. For each attribute, AdaTAU permits
either a single a-v pair, several distinct a-v pairs (with values restricted to a finite list), or
an unspecified number of a-v pairs (with arbitrary values) to exist simultancously in the
fact base. These restrictions are encapsulated in a fact base schema, described below,
which is part of the fact base data structure.

Fact bases can be created using Create, then filled with facts using the Install rou-
tine. Facts can also be deleted from the fact base using Delete. Other operations that

Keusability Library Framework AdaTAU 08 June 1999

AdaTAU User's Manual

result in the creation of new fact bases are the set operations Union, Intersection, and
Difference.

Several routines are provided to examine fact bases. A fact base’s schema is
returned using Get_Schema. There are two versions of Search_Fact. One retumns a fact
corresponding to a given attribute while the other returns a boolean value indicating
whether or not a given fact is in the fact base. Similarly, Search_Facts returns a list of
facts with a given attribute. Furthermore, the function Dump_Base allows a fact base to
be converted into a fact list, which can be examined more easily. A fact base can also be
tested for emptiness with the function Empty. The function Subset compares two fact
bases to determine if one is a subset of the other. The function Valid can be used to test
whether or not a fact is consistent with a fact basc and the facts it already contains.
Finally, the two functions Comparible and Consistent compare two fact bases to deter-
mine if they have equivalent fact base schemas and if their facts are consistent with each
otaer. These functions can be used to determine if the two fact bases can be combined
using set operations.

Fact and Fact Base Schemas

Fact schemas and fact base schemas provide a means of configuring the possible
restrictions for a-v pairs that pertain to the various attributes. In particular, a fact schema
restricts the values that can be paired with a given attribute. A simple representation of a
fact schema is given by:

structure_type : one_of (stack, queue, string, deques,
rings, maps, sets, bags,
lists, trees, graphs, other);

In this example, structure_type is an attribute that can have exactly one of the values
listed; thus, there can be at most one fact with this attribute within a fact base at any
given time. In general, each distinct atribute has an associated fact type which is res-
tricted to be either one_of, some_of, any or reference. A fact type of one_of or some_of
specifies whether facts based on the attribute can iake on only one, or several, values
chosen from a finite list of possib: alues. In the latter case, a fact atiribute may appear
more than once in a fact base with a different value, A fact wype of gny specifies that
facts based on the attribute can take on any arbitrary value. The fact type reference indi-
cates that the fact value is actually a name that is a reference to 2 value description that is
external to the fact itself. Reference facts are used when a fact value is too large to be
embsdded in the a-v pair and the value contents are typically placed within a file stored
on disk. For each distinct attribute, a Fact Schema is maintained to capture this informa-
tion for that attribute, as well as a list of allowable values (if the attribute is one_of or
some_of). Routines are provided to create fact schemas and to extract the various com-
ponents of a fact schema (Ger_Attr, Get_Type, and Get_Values). As well, a function
Valid is provided which returns true if a given fact is valid with respect to a given fact
schema.

A fact base schema restricts the structure of the collection of facts that can belong to
a fact base. Fact base schemas are implemented as lists of fact schemas, one fo - each
attribute allowed in a fact base. Every fact base must have an associated fact base
schemz. Create Fact Base_Schema creates an empty fact base schema which can be

Reusability Library Framework AdaTAU 08 June 1990

AdsTAU User’s Manual 10

filled with fact schemas using Add_Schema. A routine, Diwnp_Schema, is prowded to
convert the fact base schema to a list of fact schemas, which can then be examined using
routines from the generic package Tau_Lists. A fact base schema can be tested for emp-
tiness using Empty. Several versions of the function Valid are provided to check for
inconsistencies between fact base schemas and attributes, facts, fact lists, or fact sche-
mas. Also, the fact schema comesponding to a particular attribute can be obtained using
Get_Schema.

IRules

TRules implement an if — then sort of rule and are the simplest kind of rule to pro-
cess. They essentially encapsulate two different fact lists with the first identified as the
premise list for the rule while the second provides a consequent list. The TAU cycle
includes a step whereby all eligible (primed) IRules are fired. A rule is primed when the
members of the premise list are observed to be present in the current fact base. Firing
results in the facts in the consequent list being added to, or deleted fromm, the fact base.

To prevent an elementary kind of infinite loop that would occur if the same primed
rule were repeatedly considered for firing, AdaTAU tags an IRule when it has been fired
once. A specific IRule tag field is reserved for this purpose. IRules also have a field
reserved for a textual explanation of the rule’s purpose.

In addition, functions are provided to extract the components of an IRule
(Get_Justification, Get_Antecedent, and Get_Consequent). Set_Flag, Clear Flag, and
Check_Flag can be used to manipulate the tag field denoting whether the JRule has fired
or not.

QRules

QRules are more complicated because they act in a two stage manner to alter a fact
base, Like IRules, 1 premise fact list is provided that enables a QRule’s firing. However,
no direct consequent facts are asserted or denied as a consequence of such a firing.
Rather, when a QRule fires, a question, whose possible answers are associated with dif-
fercnt consequcnt fact lists is added to another data structure (the agenda — see below)

MU VU AL Al aisvamewae sis weiw it 418

fact hst

The actual asking of the question (and resulting processing of facts) is deferred until
a later phase in the TAU process. The question data structure is described below, but it
should be noted that the response tc a question is unknown at the time the rule is written.
Thus there can be no one consequent list for a QRule, but rather several. In fact, because
the outcome trom a QRule hinges on thc answer 10 a question, the consequent lists are
actually attached to the question and not the QRule.

Like IRules, QRules are tagged to prevent unlimited refirings. Each QRule supplies
a weight factor that contributes to the ranking of the question within the question agenda
structu. ¢. The weight is used in conjunction with the feature that the same question can
be associated with different QRules, each of which can schedule the question using its
own weight value to rate the importance of the question. A question’s position on the
agenda is determined by the sum of the weights assigned to it by all of the QRules
requesting it. QRules are also equipped with a single text field that can be used to report

Reusability Library FFramework AdaTAU 08 June 1996

AdaTAU User’s Manual 11

to the user why a particular question was scheduled by this rule.

Functions are also provided to extract the components of a QRule (Get_Conditions,
Get_Question, Get Weight, and Get Jusiification). Set _Flag, Clear Flag, and
Check_Flag, respectively, mark a QRule as fired, mark a QRule as unfired, and deter-
mine whether or not a QRule is marked fived or unfired. Like IRuies, a QRule can only
be fired once, so marking a QRule tired prevents it from being considered for firing
again.

FRules

FRules are unlike IRules and QRules in that they do not cause new facts to be added
to a fact base directly or indirectly. Rather, the purpose of an FRule is to promote the
opportunity for inference (the basic process of producing new facts from old) ir another
location within a distributed collection of inference bases. Like QRules, FRules are
weighted so that if multple FRules can fire in a given infererce base, the competing
focus suggestions can be ranked so that the more likely inference base is exarnined first.
A focus agenda is used to keep track of multiple inference opportunities. If two or more
different FRules each point to the same inference base, the sum of the weights of these
rules is used to rank the inference context on the focus agenda when each rule is fired.
Like both IRules and QRules, FRules are tagged to prevent unlimited refirings and
FRules also contain an explanation field.

Operations are provided to extract the components of an FRule (Get_Conditions,
Gei_Question, Gei_Weight, Ges_Contexi and Get_Jusiificaiion). Set_Flag, Clear_Flag,
and Check_Flag, respectively, mark an FRule as fired, mark an FRule as unfired, and
determine whether or not an FRule is marked fired or unfired. Routines are also provided
to create FRules from their constituent parts, copy FRules and compare FRules.

Ruie Bases

A particular instance of a centralized AdaTAU application is defined by a fact base
schema, an optional initial fact base, and a list of rules (IRules, QRules) that are applica-
ble to the fact base. The collections of rules are called rule bases. AdaTAU is configured
bases ar¢ implemented as instantiations of a generic rule_base package, which in-t‘l;-lzl;
instantiates a generic list package.

Distributed AdaTAU applications are defined by collections of inference bases,
each of which includes a fact base schema, a fact base, and lists of rules (IRules, QKules
and FRules) that are applicable to the fact base. In addition, inference bases also can
make use of fact parameters to communicate with each other. FRule bases also are
defined via the generic rule base package.

Questions

Questions are directly associated with QRules but are configured separately to allow
different rules to use the same question configuration. One component of a question is
the text of the question itself which is presented to the user. Another is a structure, called
a response schema, which maintains, for each possible user’s response, a corresponding
conscquent fact list that describes the consequences of the QRule(s) that scheduled the

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Manual 12

asking of the question initially. Responsec schemas are abstract data types in their own
right and are provided, along with appropriate operations, in a separate package.

The simiplest kind of question is one that admits a limited number of answers that
can be presented in multiple choice terms. For example, a question can be representea as

Question Ask_Component_Type is
Text: {What is the component type?};
Type: one_of;
Responses:
"structure" => (component_type, structure);
"tool" => (component type, tool);
“"subsystem" => (component_type, subsystem);

For each choice, a corresponding list is stored and members of the list are added/deleted
to/irom the fact base if the user picks that choice. In the example above, the listed fact is
added to the fact base when the user makes the choice to the left of each fact. Facts to be
deleted are maked by the *~ character (see the discussion of RBDL in the appendix). An
extension of this view penmits the user to agree to several (or all) of the possible answer
choices. In this case, all of the corresponding consequent lists would be processed, with
contradictory facts resulting in a raised exception. Routines are provided to create ques-
tions and to extract the various components of a question (Get_Text, Ge:_Num_Choices,
and Get_Response_Table).

Agendas

‘We have already mentioned that questions are scheduled as a result of the fuing of
QRuies, and that the actual processing of questions is handled via a weighted agenda
mechanism. Similarly, FRules produce focus switch suggestions which are handied by a
separate focus agenda. The concept of ageada can actually be abstracted as simply a
weighied queuc of items where the agenda manager will simply provide the most highly
weighted itern when a user wishes to retrieve an item from the agenda. When an item is
added to the agenda, a check is made to see if the item is already on the agenda. If it is,
the weight of the itom is adjusted. If it is not, the itom is added © the agenda along with
its initial weight.

In addition, the AdaTAU application requires a link back to the object(s) that posted
the item to the agenda. In the initial AJaTAU design, the items on the agenda are ques-
tions (actually they are pointers to questions), and the objects posting questions to the
agenda are QRules. Thus the question agenda for AdaTAU is an ordered (by weight) list
of questions, each of which refers to a list of the QRules that contributed to the question
having been placed on the agenda. In the current design, focus agenda items are the
identities (usually narnes) of inference base locations, and a lisi of FRule reference con-
texts that identify each of the FRules that caused the agenda item to have been placed on
the agenda as well as the inference base location of the FRule itself. The reference lists
maintained per agenda item can be used to tag the actual facts that eventually are
asserted as a result of using the item reirieved from the agenda as well as permitting truth
mainienance under non-monotonic reasoning. In general, knowing the identity of the
object that caused the agenda item to be posted or modified car provide information that
is necessary when the item is processed later.

Reusability Library Framework AdsTAU 08 June 1990

AdaTAU User’s Manua!l 13

The agenda mechanism is provided through a generic package. Agendas are imple-
mented as collections of agenda records, which is another private type exported by the
agendas package. Each agenda record comresponds to a single agenda item, and vice
versa. Agenda records have three components: the agenda item itself, the composite
weight associated with the item, and an “information list” (of type Info_List, ancther
private type exported by the agendas package). The information list, for question agen-
das, is a list of the QRules that placed the question on the agenda. This list of QRules
also contains the weight that each QRule assigned to the question, but this is not visible
to the user,

Many operations are provided both for agenda records and for info_lists. Routines
are provided to extract the three components of an agenda record (Ger_Item, Get_Weight,
and Ger_Info). No routines are provided for creating or constructing agenda records
because this is done automatically when an item is put on the agenda. Procedures and
functions are included to iterate hrough an Info_List (Reser_Info, More Info, and
Next_Info), to search for information (Search_Info), and to test for emptiness (Empty).

Create_Agenda is used 1o create an empty agenda and items are added to the agenda
using Add Item. Delete_Weightiest Record removes and retums the item with the
highest composite weight from the agenda. The operation Delete_ One_Record deletes a
specified record, not necessarily the first one, from the agenda. The function
Dump Agenda converts an agenda fo a list of agenda items so that it can be examined
using routines from Tau_Lists. Search_Record searches for a particular item and, if
found, returns the corresponding agenda record. Empiy is used by the inferencer to deter-
mine when the agenda is empty.

A Basic TAU Application Shell

At the cuter-most layer, we can outline TAU as an Ada procedure which is invoked
with an initial fact base, an IRule base, a QRule base, and a question base. The contents
of these bases are determined via translation from RBDL specifications of actual fact
base scheinas and rule structures for the domain on which TAU is to operate. RBDL is
described in the language subsection of this report. A sample Ada procedure implement-
ing a particular method of rule-based inference is as follows. Note that this procedure is
a stripped version of the actual Ada version of the Tau procedure to allow the discussion
to focus on essential features. For example, parameters that support non-monotonic
inference are not shown in the included procedure calls.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 14 '" .

Is with Basic_Configuration;
use Basic_Configuration;
-- Basic_Configuration packages the resovrces required to run a TAU

—- application. These include types for fact bases; both kinds of rule
-- bases and the notions of local question agenda and response management.

procedure Tau (Current_Fb : in out Fact_Base; .
Irule Rb : in Irule Base; .
Qrule_Rb - in Crule Base;
Questions : in Question_bBase;
Local_Agenda : in Question_Agenda :=
Q Agendas.Create_Agenda) is ‘tﬂf

User_Response : Response;
Working_Agenda : Question_Agenda :~ Local_Agenda;

begin f;f
-- forward chain all firable rules; update agenda
“ Think (Current_Fb, Irule Rb, Qrule_Rb, Local_Agenda):
while not Q_agendas.Empty (Working_Agenda) loop
-- ask question at top of agenda producing response
Ask (Working Ageada, Questions, User_Response);
-~ use response to modify the fact base
Update (Current Fb, User_Response);
~- Think again
Think (Current Fb, Irule Rb, Qrule_Rb, Working_Agenda):
end loop; i@

end Tau:;

Basic inference progress is made within the Think and Update procedurcs while

user interaction is handled inside of Ask (see figure 2). After an initial execution of the

Think phase, a loop through the successive phases of Ask, Update and Think is executed

0 until the working agenda becomes empty. At this point no IRules are primed and no
questions derived from QRules remain for the user to answer. We now consider these

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’'s Manua! 15

phases individually.

Think. An initial invocation of AdaTAU will process all IRules until no further changes
to the fact base are possible. IRules will be examined in an arbitrary order; in particular,
the rule base designer cannot assume any particular ordering of their being fired, The
same arbitrary ordering is followed 1n all subsequent passes through the list of IRules.
During the Think phase, several passes through the sct of IRules may be necessary since
the additon of facts in the consequent lists of fired IRules may cause other IRules to
become primed. Then a single pass over all of the QRules is made so that all of these
rules found to be primed can have their associated questions placed on a local agenda
that is used 10 manage an orderly and prioritized interaction with the user. The examina-
tion of QRules will also occur in some fixed sequential manner. Multiple passes through
this rule set is rot required since these rules do not directly affect the fact base. Notice
that after the Ask and Update phases are completed, the Think phase is invoked again
because the fact base can be changed during the Update phase.

Ask. The user of a TAU-based application must be consulted when no further progress
can be made within the Think phase. At this point, the agenda is consulted and a user’s
response t0 a question drawn from the agenda is processed. Question-asking and
response-recording is handled by the Ask module. Other agenda items, if any, are not
processed until after the next Update phase and following Think phase are completed. f

Single Investigator

Thinl- Acl- = Indata
Think Upgate
Question
Agenda
!
IRules ====> Cantrol Flow
AN

—* Information Flow

Figure 2. Basic AdaTAU Inference

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Manuai 16

the agenda is empty initially, and the Think phase does not add any items to the working
agenda, the current AdaTAU invocation ends with no further processing.

Update. From the recorded response returned by the Ask module, updates to the current
fact base are handled by the procedure Update. Update provides a truth maintenance
phase. If a question was asked, depending on the response, consequences traced to the
corresponding QRule are processed against the fact base. In the simplest case where no
fact deletions occur, the Update phase simply needs to add those consequent facts
attached to the particular response obtained from the user. Otherwise, Update must make
sure that fact deletions are propagated through a fact dependency table that tracks the ori-
gin of facts in the fact base. In any case, the response schema data structure makes the
required information easy tc obtain.

It will be necessary for the top-level application that requires TAU to provide
instances of an initial fact base, accompanying rule bases, and a question base containing
all questions which may be posed to the user. Once the TAU component has finished its
work (the question agenda becomes empty), the outer application must also process the
resulting fact base to extract information to be used subsequently.

An Advanced Application Sheli

The advanced TAU organization presented in this section provides capabilities
needed by the Reusability Library Framework. The RLF system includes dual
knowledge representation schemes in the form of a semantic network providing taxo-
nomic organization for the library domain, and distributed rule base systems that pertain
to discrete components of the network. Thus different rule bases will be housed in dif-
ferent portions of the network. In order tc prepare for this integrated system, we have
designed a version of AJdaTAU which employs Distributed Rule Bases each of which is
processed independently using the AdaTAU model presented previously. Certain facts
that are produced during a local inference may need to be transferred and applied cls-
where. To accomplish this, a fact parameter capability is introduced through which facts
may be exported from an inference base, imported to an inference base, or both,

A separate process called the focuser coordinates the results produced by processing
the individual rule bases (see figure 3). The focuser is guided by an agenda of (the iden-
tities of the) separate inference base components. An item on the focuser’s agenda is
able to direct the focuser te the inference base that is most likely to permit further infer-
ence progress. Like the question agenda used within basic AdaTAU, items on the
focuser’s agenda are also weighted so that the inference base with the most notential to
affect the fact base is consulted nex.. Individual rule base processing is able to affect the
focus agenda through the firing of FRu'es which generate focus switch suggestions that
are merged in with the current focus agenda.

Although not indicated in the diagram, the occurrence of a context switch includes
the exportation of facts from the current fact base and the importation of facts to the new
fact base. This transfer is accomplished through the fact parameter facility provided in
Distributed AdaTAU. The rule base invocation strategy is designed to permit the appli-
cation to start/snspend/resume separate TAU interactions using the individual rule base
components. A key feature of this strategy is that these local TAU interactions will not
be “greedy”; that is, exhausting all possibilities locally before considering TAU

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual

17

Modified Investigator

e Control Flow

with

e

= Informstion Flow

Think

Update

Again

@

L L
Agenda

MuluPlc
Inference

Focuser
O

Bucl

Focus
Agenda

)| 1]
Choose Cali l}{,pdme
: Invesigator ocus
Focus Agenda

AN

Figure 3, Distributed AdaTAU Inference

Reusability Library Framework

AdaTAU

08 June 19990

AdaTAU User’s Manus! 18

components elsewhere in the system. Instead, the system will operate on a “willing
surrender” strategy that permits the controlling application to expect context switches
after a single pass through the Think, Ask, Update sequence. The means to providing
this capability is the focus suggestion agenda.

We assume that any application using the distributed form of AdaTAU (abbreviatzd
DTAU) will deposit the identity of an initial ir.ference base on the focus agenda so that
an initial execution of the TAU sequence can occur relative to this start-up inference
base. The version of DTAU presented here is a skeletal representation that integrates the
processing required for distributed rule bases with the local investigation that occurs once
a particular rulc base is selected. The actual code for DTAU is considerably mcre com-
plicated. This version merges the modified investigator shown in Figure 3 with the
focuser into a single module and ignores details pertaining to non-monotonic inferencing.

with pasic_configuration,
advanced configuration_instance;

use basic_contiyaration,
advanced_configuration_instance;

-- advanced _configuration packages the resources required
== to run a distributed TAU application including focus management.
-— These include typcs for fact kases, 211 thrae kinds of rule baases,

-- and the notions of local question agenda,
-- global (re-focus) acenda, and response management.

procedure DTAU (Current_Fb : in out Basic_Configuration.Tau_Fact_Base;
Global_ Agenda : in out App_Focus_~Rgenda;
Current_Inference_Base : in out App Inference_Base) is

user_response : response;
first_choice, second_cheice :

inference base =

get_inference_base (global_agenda);

irule_RB : irule base;
qrule_RB : qgrule_base;
frule RB : frule base;
questions : question_base;
local_agenda : question_agenda;
refocus_suggestions : focus_suggestions :=

NULL _FOCUS_SUGGESTION:

begin
-- attempt to establish an initial TAU identity

if Current_Inference_Base = NULL INFERENCE BASE then

Reusability Library Framework AdaTAU 08 June 1996

AdaTAU User’s Manua. 19

6 - There must be an initial inference base to get started
return;
else
~-=- Translate TAU identity fetched from global agenda to a TAU context

Acquire TAU Context (Current_Inference_Base, irule_RB, grule RB,
frule_RB, questions, local_agenda):;

Think (current_FB, irule RB, qrvle RB, local_agenda);
loop

-~ This is the basic inveatigator sequence: Think, Ask, Update,
--— Think again

-~ forward chain all firable rules; update local agenda;
-~ QRul~s are considered in the Think module,
.ules are considered in the Think After module.
sre IRules may have become primed after user is consulted.
if not g _agendas.empty (local_agenda) then
-- ask question at top of agenda producing response
Ask (local_agenda, questions, user_response);
-- use response to modify the fact base
Update (current_FB, user_response);
end if;
-— Now process all newly fireable irules and fire
—-- any primed frules. Any fired frules
-- will contribute re-focus suggestions
Think_After (current_ FB, irule_ RB, frule_ RB, refocus_suggestions);
-~ Merge refocus suggestions with current global agenda to
-- reconsider most likely investigator bases;

@ -- Return handles to first two choices

eval_focus (glolal_agenda, refocus_suggestions, first_choice,

Reusability Library Framework AdaTAU €8 June 1990

AdsTAU User’s Manual 20

G second_choice);

1Z not (first_choice = NULL_INFERENCE_BASE) then

-~ Perform context switch since a refocus is indicated

Update_TAU Context (current_ inference_base, irule_RB, qrule RB,
frule RB, questions, local_agenda):

current_inference_base := first choice;

Acquire_TAU_Context (current_inference_base, irule RR, qrule RB,
frule_RB, questions, local_ agenda):

end if;
Think (current FB, irule RB, qrule RB, local_agenda};

-~ Think again before leaving or continuing the loop
~- Stop when no further inference processing can take place

exit when (first_choice = NULL_ INFERENCE BASE) and
a basic_configuration.q_agendas.empty (local_agenda);

-~ Now test the three failed exiting conditions carefully
end loop:;
end if;

end DTAU;

The Think, Ask and Update modules for this advanced AdaTAU interaction scheme
function just as they did for the basic centralized versicn of AdaTAU. The Think_After
module functions almost identically o Think except that after all IRules are considered
as described for Think, FRules are processed which generate new, or additional, focus
switch suggestions that are to be merged with the current focus agenda. The main part of
DTAU is structured as an Ada loop with explicit exit. When the indicated conditions
occur, no fusther inference progress can be made within the fact base.

The actual consideration and management of focus switches is assigned to the pro-
cedure eval_focus. Eval_focus retums with the top choice for which inference base
should be considered next. Typically, where there are only a few inference base possibil-
ities, it is likely that the top choice will be the same as the current inference base, and the
local agenda will have items remaining on it. In this case, inference will continue by
exccuting the basic TAU sequence again. When a context switch is required, the old

0 coniext information is saved as necessary (by Update_TAU_Context) and a new context
established by calling Acquire_TAU_Context. The design curiently relies on

Reusability Library Framework AdaTAU 08 June 1990

AdsTAU User's Manual 21

0 Acquite_TAU_Context io produce the actual rule bases and question bases that are
required by the individual TAU modules.

Reusability Library Framework AdaTAU 08 june 1990

AdiTAU User s Manual

4. AdaTAU System Components

The major concepiuai components of AdaTAU are mapped onto compatible Ada
definitions that take advantage of relevant Ada features. For the most part, AdaTAU
concepts are effectively captured by Ada packages that provide an abstract data type
view of the concept. At the core of AdaTAU, we provide an integrable family of Ada
packages, each of which is identified with a key concept of the AdaTAU approach.

Identifying the data objects to be manipulated Ly the AuaTAU inferencer is a very
straightforward task. The objects correspond directly to the activities that take place dur-
ing an inference cycle. These activities involve firing rules, taking questions from a local
question agenda and asking them, processing inference base context switches through the
focus agenda and processing facts within a fact base. Consequently, the objects that the
AdaTAU inferencer is most directly concerned with are facts and fact bases, rules
(IRules, QRules and FRules), rule bases, and agendas. The corresponding ADTs, how-
ever, build upon and are associated with other objects as well as each other (see figure 4).
Note that this figure only depicts the basic AdaTAU configuration and does not show
packages that make nn the advanced AdaTAU configuration,

For example, facts and fact base schemas are the components which constitute fact
bases. Facts also make up fact lists, which in turn are components of both IRules and
QRules. Response schemas are a component of questions, which are in turn an addi-
tional component of QRules. IRuiles and QRules are used to instantiate their respective
types of rule bases and rule lists. Rules of hoth types are associated with fact bases when

they are fired. Rule bases are converted to rule lists when they need to be examined by
higher-level routines. Fact bases can be converted to fact lists in a similar manner.

The routines inciuded in these ADT packages are designed to provide the basic
minimal primitive operations needed by any application utilizing the ADTs. The pro-
vided operations fall intc two general categories: those that modify an object (creating,
adding, deleting, eic.) and those used to examine the objects (extracting compcaents,
iterating through lists and tables, etc.). In the AdaTAU application, the modifying opera-
tions will for the most part be used by the RBDL processor to create and build objects
and by higher-level inferencer routines to update fact bases. The routines for examining
objects, on the other hand, wiil be used by the inferencer and for debugging by AdaTAU
builders.

Each ADT package contains routines for converting objects to a structure suitable
for stering in a file and for manipulating tables of such persistent structures. Using these
routines, the application writer can initialize these tables, add, delete, and retrieve objects
from tables, 10ad a table from a file, store a table to a file, and delete a table (thus freeing
the memory it occupics). This scheme allows the state of an AdaTAU session to be
frozen and stored, and then used to start up the session at a later time.

There are some characteristics that arc common to all of these ADTs. One is that
the standard “=" and *:=" operations use “share” semantics. That is, two objects are not
equal (“=") unless they are actually the same object. Similarly, assignment (*:=") resulis
in the left-hand side of the assignment simply referring to the same object as that
represented by the right-hand side. Operations which provide “copy” semantics are pro-
vided in all packages. These operations are equivalent (which returns true if two objects
arc identical, but not necessarily the same object) and copy {which returns an identical,

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 23

Fact Base Question __Reapmse
Schemas Agendas y Schemnass
Rule
Qrules Baszes
/ /
Rule
Irules Lists
/ "Aispanof B"
[A}—~—AB] "Arefcrs 1o B”

@'l_@ "A can be converted to B”

Figure 4. Basic AdaTAU Component Taxoriomy

but separate, copy of its input parameter).

All ADTs also have an associated create operation which performs any
implementation-dependent initializatdon necessary. Each cbject must be “created”, using
this routine, before it can be used in any other operation. After an object is declared, but
before it is “created”, it is said 10 be nuii. Each ADT package provides a constant which
represents this null value, so an object can be compared to this null constant (using “="
to determine whether or not it has been created. Where appropriate, an exception is
raised if an operation is attempted on a null object.

All of the operzations that add to or delete from an object are “hard”. That is, an
“add” operation raises an exception if the component to be added already exists within
the object {unless it makes sense for a particular chject to have multiple copies of identi-
cal components, as is the case in a few situations). Similarly, a “delete” operation raises
an exception if the component to be deleted does not exist within the object. “Probe”
functions are also provided which test for the conditions which would lead to an excep-
tion.

Each ADT is described in more detail in the separate subsections which follow. For
each ADT (Ada package), the following informatio.1 is provided:

o the package name of the ADT

Reusability Library Frar:ework AdaTAU 08 June 1990

AdaTAU User’s Manual 24

e a brief description of the ADT
e the major objects and types of the ADT
e the major operations supported by the ADT.

Each of the objects and operations is summarized with a brief explanation clause.
More information about these objects and operations can be found within the Ada source
files containing the actual package specifications. The information presented in this
document is minimal compared io the description given in the ADT itself, and
corresponds to a snapshot of a particular version of the ADTs. Information presented
here may be incomplete, or there may be, inconsistencies between this document and the
iatest versions of the ADTs themselves. As such, the interested reader is encouraged to
read the ADTs for the most up-to-date and complete information about each ADT. Each
file is formatted with a standard header and includes comprehensive descriptions of the
contents and basic semantics of each package.

Several of the ADTs require that collecdons of objects of a particular type must be
maintained; the Tau_Lists generic package has been provided to implement all the list
structures used in AdaTAU. The data structure provided is a simple, singly-linked list.
Operations are provided for creating empty Tau_Lists (Create_Tau_List), adding items to
the list (Build_List), iterating through a list (Reset, More_Items, and Next_Item), search-
ing for a particular item (Search_Item), deleting a particular item (Delete_Iterr), and test-
ing a list for emptiness (Empuy).

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 25

4.1. Facts

Package Name
Facts

Description

This package defines the abstract data type fact. Facts, conceptually, are made up of two
parts: an attribute and a value. For example, the pair (loop_type, while) can be viewed as
a fact stating that the loop under consideration is a while loop. Routines are provided for
creating facts, as well as for extracting the attributes and values of facts. Functions are
also provided to convert attributes and values to strings and vice versa. Additionally, a
routine is provided to extract a fact’s unique_identifier value. Finally, persistence rou-
tines are included that are used vy higher-level packages to save files of facts.

Objects
type Attr_ Type is private;
--This is the type of the attribuce part of a fact,

type Value Type is private;
—~This is the type of the value part of a fact.

type Fact is private;
-~A fact can be thought of as an (attribute, value) pair.

type Fact_Table is private;
--Facts are saved to files in the form of fact tables

Null Attr : constant Attr_Type;
Null_Value : constant Value_Type:

Null Fact : constant Fact;
--This is the value ¢f a fact before it is "created"

Operations
Convert_Attr (2)
two overloaded operations under this name: one converts stings o objecis of type attr_type, the
other converts objects of type atr_type to strings.
Convert_Value {2)
two overloaded operations under this name; one converts strings 0 objects of type value_type, the
other converts objects of type value_type 1o strings.
Create
creaics a fact from a given attribute and value.
Copy
returns an identical, but separatz, copy of a fact.
Get_Id
retums the unique_idesntifier component of a fact,
Get Attr
renirns the atixibute par: of a fact.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 26

Get_Value
returns the value part of a faci.

Equivalent
returns true if the attributes and values of two facts are identical.

Create_ Fact_Table
creates an cmpty fact table.

Save_Fact_Table
saves table in a file identified by a name string.

Open_Table
retrieves table from & file identified by a namc string and prepares it for reading.

Delete Table
releases the memory used for table.

Store Fact
stores a fact in table,

Retrieve By_Id
returns a fact with a specific identifier id which is in a iable. Retums NULL_FACT if no such fact
exists.
More Entries
retumns true if there are more facts to be returned from table.
Next_Entry
retrieves, through a specified pavameter next, the next fact in table,

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 27

4.2. Fact Lists

Package Name
Fact_Lists

Description

This package defines the abstract data type fact_list. A Fact_List is simply a list of facts
to be used where such lists are needed in rules, etc., (e.g., antecedents, consequents) and
to provide a way to examine the facts in a fact base. They are also used various other
places in the AdaTAU system. The implementation of fact lists relies on an instantiation
of the generic package Tau_Lists, instantiated with the type fact. Routines for creating
and building lists, as well as for getting the first fact in the list, for getting each succes-
sive fact in the list, for searching for a particular fact, for deleting a fact from the list, and
for determining if a list is empty or not, are all provided through the Tau_Lists Lackage.
A function for finding the fact associated with a particular attribute in the list is provided
through this package.

Objects

package New_Lists is new Tau_Lists (Facts,Fact, Facts.Egquivalent);
=~ Tau_Lists is instantiated to implement Fact_Lists

subtype Fact_List is New_Lists.Tau_List;
-— the actual fact list type

Operations

Copy
makes an identical, but separate, copy of a fact list.

Null And Free
produces a null list and releascs any dynamic storage associated with the list.

Merge Lists
merges two fact lists together into a single list.

Eguivalent
determines whether or not two fact lists contair equivalent facts in the same order.

Sane_Facts

detzrmines whether or not two fact lists contain equivalent facts, without regard to order.
Search Value

given a list and an attribute, finds the value(s) associated with that attribute in the list.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 28

‘ 4.3, Fact Value Lists

Package Name
Fact_Value_ Lists

Description
Instantiates Tau_Lists with fact values. This allows lists of fact values to be created
independent of a given fact schema (for example, in the fact parameters package).

Objects
package Fact_Value_ Lists_Pkg is new Tau_Lists (Facts.Value Type);
-- Equivalence operation defaults to "=", with copy semantics)

subtype Value_List is Fact_Value_Lists_Pkg.Tau List;

Nuall_Value List : constant Value_List := Fact_Value_Lists_Pkg.Null_List;

Operations
Copy_One Val
copies a single fact value,
others
Q derived from the Fact_Value_Lists_Pkg instantiation of the generic package Tau_Lists.

Reusability Libriry Framework AdaTAU 08 June 1990

AdaTAU User’s Manusl 29

4.4. Fact Schemas

Package Name
Fact_Schemas

Description

This package defines the abstract data type Fact_Schema. A Fact_Schema is a structure
which defines the form of any fact(s) associated with a particular attribute. A
Fact_Schema includes the name of the attribute, an indication of whether it is multi-
valued or single-valued or can take on any arbitrary value, and an vuptional list of values
that the fact can take on. Routines are provided to create a fact schema and to retrieve all
of the various components of a fact schema. As well, a function is included which
checks a fact for validity with respect to the fact schema. Persistence routines are also
included that are used by higher-level packages to save files of Fact_Schemas.

Objects
rpackage Value_Lists renames Fact_Value_Lists.Fact_Value Lists_Pkg;
subtype Value List is Fact_Value Lists.valve_list:

-=-This is the type of the list of values that an attribute
--can take on.

type Fact_Type is (One_Of, Some_Of, Any);
-~This indicates whether the fact can take on one of several
--user-enumerated values, some of several user-enunerated
--values, or any arbitrary value.

type Fact_Schema is private;
--This type holds the schema associated with a single attribute,

type Schema_Table is private:
—-Fact_schemas are saved to files in the form of schema tables

Null_Fact_sSchema : constant Fact_Schema; o
Y
Operations
Create
creates a fact schema for a given attribute, with a given fact_type and, in some cases, a list of possi-
ble valucs.

Null And Free
nullifies a fact schema and releases any dynamic storage associated with it.

Copy
creates an identical, but separate, copy of its input parameter.

Get_Attr
extracts the attribute from a fact schema.

Get_Type
extracts the fact_type from a fact schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User 's Manusl

Get_Values
extracts the list of values from a fact schema.

Equivalent

compares the attributes, fact_types, and value lists of two fact schemas 10 see if they are equivalent.

Valid
checks a fact for validity with respect 1o schema.

Create_Schema_Table
creates an einpty schema table.

Save_Schema_ Table
saves a schema table in files.

Open_Table
retrieves a schema table and prepares it for reading.

Delete_Table
releases the memory used for a schema table.

Store_Schema
stores a fact_schema in a schema table.

More Entries

determines if there are more fact_schemas to be returned using next_entry.

Next_Entry
retrieves the next fact_schema in a schema table.

Reusability Library Framework

08 June 1990

AdaTAU User s Marual k)

4.5, Fact Base Schemas

Package Name
Fact_Base_Schemas

Description

This package defines the abstract data type Fact_Base_Schema. A Fact_Base_Schema is
a component of a fact basc and dictates what facts are allowed to be added v the fact
base. It defines which facts are single-values' and which are multi-valued, which must
take values from a set of values enumerated by the user and which may take any arbitrary
value. It also defines what atiribute values are allowable. A Fact_Base_Schema is a col-
lection of Fact_Schemas (from the package Fact_Schemas), each of which defines the
schema associated with a particular attribute. As well, a Fact_Base_Schema is a com-
ponent of a Fact_Base, defined in the package Fact_Bases, and defines the form of facts
that can be placed in the fact base. Routines are provided to create an empty faci base
schema, to add a fact schema to a fact base schema, to conver a fact base schema to a list
of fact schemas (to facilitate examining the schema), to search for a fact schema associ-
ated with a particular attribute, and to check a fact base schema for emptiness. There is
also a group of routines included which check facts, fact schemas, attributes, and fact
lists tor validity with respect t0 a fact base schema.

Objects

type Fact_Base_Schema is private:;
--This structure holds the schema for an entire fact base.

package Schema_Liats is new Tau_Lists (Fact_Schemas.Fact_Schema,
Fact_Schemas.Equivalent);

subtype Schema_List is Schema Lists.Tau_List;
--List form of collection of individual schemas

Null Fact_Base Schema : constant Fact_Base_Schema;

Operations
Create_Fact_Base_Schema
creates an empty fact base schema.

Compose_Fact_Base_Schema
composes fact base schema, according to the schema list provided, which can be further filled with
repeated calls to add_schema.
Copy
creates an ideatical, but separate, copy of its input parameter.
Null And Free
nullify, and release associated dynamic memory, for a particular fact base schema,
Add_Schema
adds a fact schema to a fact base schema.

Change_Label
change the label of a fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual ' 32

Dump_Schema
convenrts a faci base schema to a list of fact schemas in order that the fact base schema can be more
easily examined.
Get_Label
returns a fact basc schema’s label.
Get_1d
retums the fact base schema’s unique identifier.
Get_Schema
returns the fact_schema associated with the attribute in the fact base schema parameier.
Empty
checks a fact base schema for emptiness.
Valid 4}
four differcnt operations under this overloaded name; checks a fact, attribute, fact list, or fact schema
for validity with respect to a fact base schema.
Equivalent
checks atl of the components of two fact base schemas to see if they arc equivalent.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 3

4.6. Fact Bases

Package Name
Fact_Bases

Description

This package defines the abstract data type Fact_Base. A fact base is simply a collection
of facts with 2n asscc.ted fact base schema which is used to monitor the validity, or
admissability of facts that are added to the fact base. Fact bases also have a label and an
internal identifier. Fact bases can be used to collect facts into logically related groups. A
routine is provided for creating fact bases. A fact base can be built by successively put-
ting facts into it using the install routines. A function is provided to check if a fact is
valid for a particular fact base. Routines are also provided for searching for a particular
fact, finding a value for a particular attribute, deleting a fact from the facy base, extracting
the fact base schema, label, and identifier from a fact base, changing a label, and deter-
mining if a fact base is empty or not. If the individual facts in the fact base need to be
examined, then the base can be converted to a Fact_List (from the package Fact_Lists),
using Dump_Base, and then ¢xaminec using list routines. Operations are also provided
to determine if two fact bases have equivaient fact base schemas and consistent facts. Set
operations are also provided for fact bases. Some operations are also included which are

wead hi hicdhar laual naclkacac tn cave narcictant varcinne nf fact hacac tn filac
WSCE DY DIZALT 1SVEL PACAAZes 1O 5aVe DOrSISient VErsions O I5C1 DAses 1o es,

Objects

type Fact_Base is private;
--A fact_base can be thought of simply as an unordered
--collection nof facts, along with a schema defining what facts
~-are admissable.

subtype Base_List is Fact_Lists.Fact_ List;
--just the facts in a fact base

Null Fact Base :

2]

constant Fact_Base;
Null Base_List : constant Base_List :=
Fact_Lists.New_Lists.Null_List;

Operations

Create
crcates an empty fact base with the given fact base schema.

Compose
composcs & fact basc. according to the constituents provided, which can be furiher filled with
repcated calls to install

Install (2)
this name is overloaded with two operations; one adds the a parameter of type fact to a fact base; ihe
other adds an attribute - valuc pair to a fact base.

Union
creates the union of two fact bases,

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manuzl

Intersection
creates the intersectior. of two fact bases.

Difference
creates the difference of two fact bases,
Copy
creates an identical, but separate, copy of its input parameter.
Null And Free
nullifies a fact base releasing any storage occupied by the fact base.
Delete_Fact
deletes a fact from the fact base.
Change_Label
change the label of a fact base.
Dump Base
converts a fact base to a fact list for easier examination of the facts.
Get_Label
returns the label of a given fact base.
Get_1Id
retumns the fact base’s vuique identifier.

Get_Schema
returns the fact base schema of a given fact base.
Search Fact (2)

this name is overloaded with two operations; one searches for a given fact in the fact base; the other
searches ior a given auribute.

Search_Facts
returns all the facts associated with a given attribute.
Subset
determines if one given fact base is a subsct of anothes.
Empty)
checks a fact base for empliness.
valid
checks & given fact for validity with respect to a given fact base.
Consistent
Aatasmiosan
Compatible
determines if two fact bases have equvalent fact basc schemas,
Equivalent
checks the fuct base schemas and al! the facts associated with two fact bases to determine if they are
equivalent,

Reusabiiity Library Framework 03 June 1990

AdeTAU User’s Manual 35

4.7. Fact Parameters

Package Name

Fact_Parameters

Description

Fact parameters are essentially requests for facts required by or provided by an AdaTAU
inferencer. Each fact parameter specifies the attribute for which a corresponding value is ;
required at the time the parameter is imported or exported. The "protocol” of the fact -
parameter indicates the desired reaction to the absence of a value for the desired attri-
bute: silent failure (Optional Protocol), provision of a default (Default Protocol), or rais-
ing an exception if the fact parameter is explicitly required for the inference to be valid

(Mandatory Protocol). The defaulis are specified via fact_valae_lists, which serve for
"one_of”, "some_of" and "any" type facts.

Objects

type Fact_Parameter Protocol is (
Mandatory, =-- absence of corresponding fact raises exception
Default, -- absence result in default value(s)
Optional -- absence results in no action

);

type Fact_Parameter(Protocol : Fact_Parameter Protccol := Mandatory)
is private;
-- the type itself

Null Fact_Parameter : constant Fact_Parameter;

Operations

Create (4)
overloaded for various types of intcgrity checking; one igniores checking any schemas, one checks
onlv g single fact schema, one checke a single fact bace schema, one checke two fact bace schemag in
order to allow a legal exchange between two different fact base schemas.

Attribute
retums the fact attribute of the parameter.

Protocol
returns the fact protocol o the parameter.

Default_Values
returns the default value of the fact parameier,

Search_Fact (2)
this name is overloaded with two operations; one rewums 2 fact corresponding te a fact parameter in a
fact hase, over-riding the proiocol specified in Parameter with Protocol; the other retums a fact
corresponding to a fact parameter in a fact base, according 10 Fact_Protocol of the fact parameter.
valid(2)
this name is overloaded with two operations; one reports whether the parameier that would be
formed from the specified attribute, protacol, and default value would be valid with respect to the
givern fact base schema; the other reports whether the parameter is valid for the fact base schema.

Rcusability Library Framework AdaTAU 03 June 1990

Fa

AdaTAU User's Manual

Created
Checks whether a successful Create was applied to the fact parameter.

Transfer
moves facts between fact bascs via fact parameters.

Reusabiiity Library Framework AdaTAU

08 June 1990

AdaTAU User’s Manual 37

@ 4.8. Fact Parameter Lists

Package Name
Fact_Parameter_ Lists

Description

Provides a composite layer of operations over fact_parameters, for operating on lists of
fact parameters.

Objects

package New_Lists is new Tau_Lists (Fact_Parameters.Fact_Parameter);
~~ Equivalence operation defaulta to "=", with copy semantics

subtype Fact_Parameter_ List is New_Lists.Tau_List;
-- the type itself

: Operations

none except as provided in the Tau_Lists abstraction.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual K}) “

4.9. IRules

Package Name
Irules

Description

This package defines the abstract data type Irule, or inference rule. Irules, conceptually,
can be thought of as two sets of facts: the antecedent (the facts that must be in the fact
base in order for the rule to fire) and the consequent (the facts that are inferred and added
to the fact base when the rule fires). Irules also have an external label which is strictly
for the convenience of the user and is not used intemally at all. There also is an internal
unique ideatifier for each Irule. Irules also contain an internal flag which signals whether
or not the rule has been fired. Another component of an Irule is a textual justification.
Irules can be created using the routine createc. Before this, however, two Fact_Lists
(from the package Fact_Lists) must be built and then passed to the create routine as the
rule’s antecedent and conscqueni. Routines are also provided to extract the label, the
identifier, the antecedent, the consequent and the justification from an lrule, and 1o set,
clear, and check the fired fiag and to change the label. Persistence routines are also
included that are used by higher-level packages to save fiies of Irules. e

Objects

subtype Text is String (1..490);
--used for an Irule justification

type Irule is private;
--An Irule can be thought of as two sets of facts, an antecedent
-—-and a conseqguenc.

type Irule Table 13 private;
--Irules are saved to files in the form of Irule tables

Null Irule : constant lrule;

Operations
Create
creates an Irule from two fact lists and a label.

Copy
creates &n identical, but separaw, copy of its input parameter.
Null_And Free
replaces an irulc with a null irule, freeing any dynamic storage occupied by irule conteats.
Change_Label
change an Irule labei.
Set_Flag
sets the "fired” flag of an Irule to true,

Clear Flaag
sets the "fired” flag of an Irule to false.

Reussbility Library Framework AdaTAU 08 June 1990

AdaTAU User s Manual

Get _Label
extract the label from an rule.

Get_Id
extract the id from an Irule,

Get_Justification
extract the justification from an Irule.

Get_ Antecedent
extract the antecedent from an Irule.

Get_Consequent
extract the consequent from an Irule.

Check_Flag
checks the "fired” flag of an Irule.

Equivalent

39

checks the antecedents and the consequents of two Irules to determine if they are equivalent.

Create_Irule_ Table
creates an empty Irule table.

Save_lrule Table
saves an Inule table in files,

Open_Table

retrieves an Irule table and prepares it for reading.
Delete_Table

reicases e memory used for an hule iabie.
Store_Irule

stores an lrule in an Irule table,
More Entries

determines if there are more Irules to be retumed using next_entry.,

Next_Entry
retrieves the next Irule in an Inile table.

Rensability Library Framewoik AdaTAU

08 June 1990

~AaTAU User’s Manual 40

4.10. FRules

Package Name
Frules

Description

This package defines the abstract data type Frule, or focus_suggesting rule. Frules, con-
ceptually, can be thought of as having several components: a set of conditions, or facts,
that must be in the fact base in order for the rule to fire, an inference base identity
referencing another TAU inference context wherein inferencing can either be begun or
continued (captured as another ADT implemented as the package inference_bases), a
numerical weight, and an English explanation of why this context switch should be con-
sidered in this particular instance. This inference base identity is supplied as a generic
parameter. Frules also contain an internal flag which signals whether or not the rule has
been fired. Routines are provided to create Frules and to extract the different com-
ponents that are visible to the user. Routines are also provided to set, clear, and check
the "fired” flag in a Frule.

Objects

type Text is new String (1 .. 400);
--Used anywhere text is needed.

type Frule is private;
~~A frule can be thought of as a set of facts (an antecedent),
~-an inference base suggestion, a numerical weight, and a justification
-~in English.

type Frule Context is private;
--An frule context associates an frule and an inference context

subtype Frule_Site Context is Frule Context;
--An frule site context joins together an frule and an inference
-~-gontext that it was applied in

subtype Frule_Switch_Context is Frule Context; 3
--An frule switch context joins together an frule and an inference
--context that it suggests

type Frule Table is private;
--Frules are saved to files in the form of Frule tables

Null Text : constant Text := Text’ (1 .. 3 => 2/, !
others => ' '); e

Null_ Frule : constant Frule;

Operations ¥
Create 75¥
creates a new frule with the given components. :

Reusability Library Framework AdaTAU 08 June 1920

AdaTAU User’'s Manual 41

o Create_ Site_ Context A

creates a new frule_site_context with the given components.

Create_Switch Context
creates a new frule_swiich_context from the given compornents.

Copy

retumns an frule which is identical to, but scparate from, the rule parameters.
Copy_Frule_ Switch_Context

returns a frule_context which is identical to, but separate from it’s input.
Null And Free

replaces Rule with a Null_Frule, freeing any storage associated with the ruie
Change_Label

replaces the labe! of rule with new_label.

Set_Flag
sets the flag signalling whether or not the rule has fived to true.
Cleax_Flag &
sets the flag signalling whether or not the rule has fired to false.
Get_Label
extracts the label of a frule.
Get_1d
extracts the identifier of a frule.

_Conditions

extracte the farct lict that ic the cat of conditione needed to he satisfied for the mile to fire.

Get_Context
extracts the inference_base identity to be suggested when the rule fires (this type is the generic
parameter to this procedure).
Get_Weight
extracts the weight, or priority, of the frule.
Get_Justification
extracts the justification associated with the frule.
Check Flag
retumns the value of the flag signalling whether or not the rule has fired.
Get_Switch Context Id
retums the context id of the switch contexr.
Get_Switch_Context Frule
returns the frule id of the frule which suggested the context switch recorded in the switch context.
Get_Site Context_Id
returns the context id of the site context.
Get_Site_Context_Frule N
returns the frule id of the frule associated with the site in the site context. 3
Equivalent ‘

returns true if the conditions, inference basc contexts, and weights of the two rule parameters are "“::
cqual, =

Equal_Frule_Switch_ Context
returnis true if the two frule_context’s are equal.

Create_Frule_Table
creales an empty frule table.

o Save_Frule Table =
saves table in several files, using name to generate the file names. B

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 42

Open_Table
using file name parameter (o generate the file names, retrieves table from several files and prepares it
for reading.

Delete_Table
releases the memory used for tabie.

Store_Frule
stores rule in table.

More_Entries
returns true if there are more frules to be retumed from table.

Next_ Entry -]
retrieves, in parameter next, the next frule in table.

Reussbility Library Framework AdaTAU 08 June 1990

AdsTAU User’s Manual 43

4.11. QRules

Package Name
Qrules

Description

This package defines the abstract data type Qrule, or question-asking rule. Qrules, con-
ceptually, can be thought of as having several components: a set of conditions, or facts,
that must be in the fact base in order for the rule to fire, a question to be asked (a question
is another ADT, described in the package questions), a numerical weight, and an English
explanation of why this question should be asked in this particular instance. As well, the
Qrule contains an external string identifier which is strictly for the convenience of the
user and is not used internally at all. There also is an internal unique identifier for each
Qrule. Qrules also contain an internal flag which signals whether or not the rule has been
fired. Routings are provided to create Qrules and to extract the different components that
are visible to the user. Routines are also provided to set, clear, and check the "fired" flag
in a Qrule, as well as to change a Qrule’s label. Persistence routines are also included
that are used by higher-level packages to save files of Qrules.

Objects

subtvpe Text is String(l..400);
--Used for Qrule justification.

type Qrule is private;
--A Qrule can be thought of as a set of facts (an antecedent),
--a question to be asked, a numerical weight, and a justification
--in English.

type Q .ule_Table is private;
--Qrules are saved to files in the form of Qrule tables

Null Text : constant Text := Text’(l1 .. 2 => ’2’, others => ' ’); -
~-An undefined text value R

Null Qrule : constant Qrule;

Operations
Create
creates a Qrule from its constituents.
Copy
creates an identical, but separate, copy of its input parameter.
Null And Free
replaces a gqrule with a null grule, freeing any dynamic storage occupied by grule conienis.
Change_lLabel H
change a Qrule label.
Set_Flag i
scts the "fired" fiag of a Qrule to true.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s [1anusl

Clear_Flag
sets the "fired” flag of a Qnile to false,

Get_Label /
extract the label from a Qrule. /’

Get_1Id ’
extract the id from a Qrulc. /

Get_Conditions ’

extracts the list of condition facts from a Qrule.

Get_Question
extracts the question from a Qrule.

Get_Weight
extracts the weight from a Qrule.

Get_Justification
extract the justification from a Qrule.

Check_ Flag
checks the "fired” flag of a Qrule.

Equivalent

checks the antecedents and the consequents of two Qrules 1o determine if they are equivalent.

Create_(Qrule Table
creates an empty Qrule table.

Save_Qrule Table
saves a Qrule table in files.

Open_Table

rerrieves a Qrule wble and prepares it for reading.

Delete_Table
releases the memory used for a Qrule table.

Store_Qrule
stores a Qrule in a Qrule table.

More Entries

determines if there are more Qrulss to be returned using next_entry.

Next Entry
retrigves the next Qrule in a Qrule table.

Reusability Library Framework AdaTAU

08 June 1990

AdaTAU User’s Manual 45

4.12, Questions

Package Name
Questions

Description

This package defines the abstract data type Question. Questions are comprised of the text
of the question and a response table, which contains the possible answers to the question
and a list of facts to be asserted for each answer. The response table is of type
Response_Schema, defined in the package Response_Schemas, Each question also con-
tains an indication of whether the user may choose just one or more than one answer to
the question. Additionally, questions have an external string identifier which is strictly
for the convenience of the user and is not used internally at all. There is also is an inter-
nal unique identifier for each question which is generated when the question is created.
Routines are provided to create questions, to extract the various components from a ques-
tion, and to change the label of a question. Persistence routines are also included that are
used by higher-level packages to save files of questions.

Objects
type Text is new String (1 .. 400);

~-ITaed for quesation text.
type Num Choices is (One_Of, Some Of):;
—-This type indicates whether the questiocn is a "one_of" or a
--"some_of" question, i.e., whether the user can pick just one
--9r more than one answver.

type Question is private;
--A question includes the English text of the question and a
~-response table, representing the possible answers and the
--facts to be asserted for each answer.

tvne Oueation Tahle is nrivate- A
type Question Table 13 private; 2

~-Questions are saved to files in the form of question tables

Null_Text : constant Text := Text’' (1 .. 3 => 72/,
othexs => 7 7);
--Value used for undefined text

Null Question ¢ constant Question;
Operations
Create
creates a question from the given label, texi, number of choices, and response schema.
Copy

creates an identical, but separate, copy of its input parameler,

Null And Free
replaces a question with a nuli question, frecing any dynamic storage occupied by question contents.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User's Manual 46

0 Change_Label y

change a question label.

Get_Label
extract the label from a question.

Get_Id
extract the id from an question.

Get_Text
extract the text from a question.

Get_Num_Choices ¥
determines whether a given question is "one of” or "some of".

Get_Response_Table
extracts the response schama from a question, ¥

Equivalent
checks the antecedents and the consequents of two questions to determine if they are equivalent,

Create_Question_Table
creates a empty question table.

Save_Question_Table ‘
saves a question table in files.

Open_Table
retrieves a question table and prepares it for reading.

Delete_Table ik
releascs the memory used for a question table.

S Store Question
C stores a question in a ¢uestion table.

More_Entries

determines if there are more questions to be returned using next_entry.
Next Entry

retricves the next question in a question table,

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 47

4.13. Response Schemas

Package Name
Response_Schemas

Description

This package defines the abstract data type Kesponse_Schema. A Response_Schema
stores the possible responses for a particular question and the facts to be asserted for each
response. Each question has a component of type Response_Schema which defines the
response structure of that particular question. This structure must be provided when the
question is created. A Response_Schema is made up of structures of type
Response_Type, another exported private type. Each Response_Type structure embodies
a possible user answer and the facts to be asserted for that answer. There is also is an
interral unique identifier for each response which is generated when the response is
created. Roautines are provided to create and add responses to response schemas, to con-
vert a response schema to a list of answers (to examine them more easily), to retrieve the
faci list or Response_Type associated with a given answer, to check an answer for vali-
dity with respect to a response schema, to extract the id, answer, and facts from a
response ype structure, and to test a response schema for emptiness. Persistence routines
are also included that are used by higher-level packages to save files of Response_Types.

Objects
Answer_Length : counstant Intege:x := 50;
type Ansver_ Type is new String (1 .. Anawer_Length);

--This is the type of a single answer.

type Response_Type is private;
—-This type is usec to package up information about a single
~--possible response to a question. It contains the answer itself
--and the list of facts that are to be asserted for thut answer.

type Response_Schema is private;
~-Thia is the type of the table, stored with each questicen,
~-which dictates what responses are valid and what facts will
--be asserted for each response.

type Response_table is private;
--Respongse_types are saved to files in the form of response tables

Null Answer : constaint Answer Type := Answer_Type’(l .. 3 => 72/,
others => ' /);
--value provided for undefined answer

Null_ Responsge . constant Response_Type;

Null_Response_Schema : conatant Response_Schema;

Keusabllity Library Framework AdaTAU 03 June 1990

AdaTAU User’s Manusl 48

ql’) Operations

Create
creates an empty responsc schema.
Copy
creates an identical, but separate, copy of its input parameter.
Add_Response (2)
this name is overloaded with two operations; one adds a response specified by a fact list and answer
value 10 the response schema table; the other adds an already defined response object to the response
schema table,
Null and Free
replaces 2 schema with a null schema, freeing any storage cccupied by schema contents.
Null_and Free_Response
reDlaces a response with & nall response, freeing any storage occupied by response contents.
Dump_Schema
converts a response schema 10 a list of answers in order to more easily examine the schema.,
Empty .
checks a response schema for emptiness.
valid
checks an answer for validity with respect to a response schema.
Get_Facts
retrieve the fact list associated with a given answer.

Cat Roaennnso
=CT XosE n3e

trieve the Response_Type associated a given answer,
o Get _1Id

~ extract the identifier from a Responsc_Type.
Get Answer
extract the answer from a Response_Type.
Get_racts
extraci the fact list from a Response_Type.
Response_Equiv
returns true if all the components of each of the response parameters are equal, without respect o
orger,
Equivalent
chocks all the answers and fact lists, without respect to order, of two response schemas to determine
if Lhey are equivalent.
Create Response_Table
cleates an empty risponse tadle,
Save_Response Table
saves a response table in files.
Open_Table
retrieves a response table and prepares it for :eadmg
Delete_Table
rcleases the memory used for a response tabdle.
Store Response
stores a response in a response {able.,
Ratrieve_By_Id
ﬁ returns a response from a response table with a given id.
More Entries
determines if there are more responses t0 be returned using next_entry.

Reusability Library Framework AdaTAU 08 June 1990

1

AdaTAU User’s Manual 49

Next_Entry
retrieves the next response in a responsc table.

Reusability Librsry Framework AdaTAU 68 June 1990

AdaTAU User’s Manual

0 4.14. Rule Bases

Package Name
Rule hases

Description

This package defines the abstract data rype Rule_Base. A Rule _Base can simply be
thought of as a collection of rules. Rule baser can be used to coilect rules into logically
related groups. This package is generic, and thus it ~an be used to create any type of rule
base. The package also depends on instantations of the gencnc package Tau lists,
which is instantiated with the rule type that is inpat to this package. A rule base caa be
created using the routine Create_Ruie_Base. It can then be filled with repeated calls to
Install. Rules can be deleted from a rule base with Delete. To examine the rules in a rule
base, the base can be converted to a rule list (an instanuation of Tau_Lists), using
Dump_Base, and then examined using routines provided in the Tau_Lists package. Rou-
tines are also provided to determine whether or not a Rule_Base is empty, to change a
label, to search for a particular rule in a rule base, to search for a rule given the rule’s id,
and to exwract a rule base’s label and id. The set operations union, intersection, differ-
ence, and subset are also provided.

Obiecte

0 type Rule Base is private;
--A Rule_Base can be thought of as a collection of rules.

package Rule_Lists is new Tau Lists (Rule Type, Rule_Equiv);

subtype Rule_List is Rule Lists.Tau_List;
-~A list form of a rule base.

Null Rule Base : constant Rule_Base;

Operations
Create Rule_Base
creates an empty rule basz.

Install
adds a rule to a sule base.

Cepy
creates an identical, but separate, copy of its inpat parameter.

Null And_free_Rule _Base

nullifies a ruie_base releasing any dynamic storage occupicd by the base.
Union

creates the union of two rule bases.

Intersection
creates the intersection of two mule bases.

Difference
creates the ditferenc: of two rule bascs.

08 June 1990

Rousability Library Framework

AdaTAU User's Manual 51

Delete_Rule
deleics a rule from the rule base,

Change_Label
change the lahzl of a ruie base.
Dump_Base
converts a rule base to a rule list for easier examination of the rules.

Get_Label
retumns the label of a given rule base.

Get_Base Id
retumns the rule base's unique identifier.
Search Rule
searches for a given rule in a rulc base.
Search_By_Id
searches for a rule with a given id.
Subset
determines if one given rule base is a subset of another.
Empty
checks a fact base for emptiness.
Equivalent
compares all the rules in two vule bases, without respect to order, to see if they are equivalent.
Save_Labels
saves the label and identifier of a rule base in a file.
Initialize_Base
initializes an empty rule base using the label and identifier retrieved from a file,

Reusability Library Framewark AdaTAU 08 Juac 1994

N

-

AdaTAU User s Manual 52

4.15. Agendas

Package Name
Agendas

Description

The ADTs defined in this package are information lists, agenda records, and Agendas.
These abstract data types comprise the implementation of homogeneous agendas (mean-
ing that all ite:ns on the agenda are of the same type). This packags is generic, so it can
be ured to implement several kinds of agendas. Agendas are used to maintain collec:ions
of "items", eazh of which has a weight of sume type. Items are placed on the agenda,
alcng with an ¢ssigned weight, and then items can be taken off of the agenda in order of
their weights. Tke same item can be put un the agenda more than once. In this case, the
weight associaiz¢ with the item is the sum of the weights assigned each time the item
was put on the agenda. The type of the item itself must be input as a generic parameter,
as well as a struciuve, defined by the user, which contains information associated wish the
act of placing the iwm on the agenda. Lists of these information structures are muain-
tained aloig with exch of the items on the agenda. For example, an item in a question
agenda could be the question itscli (or a reference to it), with the information list consist-
ing of the Qrules (or references to Qrules) whose fiting led to the posting of the question
w the agenda. Another generic parameter is Weight_Type, which is the type of the
weights associated with each itern. Comparison and addition operators must also be pro-
vided for this type. If no operations for Weighit_Type are specified, then they default to
standard "greater than" and addition for whatever type Weight_Type is. For each
exported type, routines are provided to make identical but separate copies of objects, and
to compare two objects for cquivalence. These routines are meant to provide copy
semantics. Ir order to implement these carrectty, routines are needed for making copies
of, and testing for equivalznce of, objects of the private types that are passed in as gen-
eric parameters. Thesc routines must also be provided as generic parameiers.

(tjects

type Infc_List is privata;
~~AlL info_list can be thought of as an ordered collection of
--information structures of type information.

tyre Agenda_Rec 1s private;
-~~Aa agerula_vec has three components: the item that the
-—-gyenda keepsz trtack of, the composite weight of this item,
~-anid & list of the information that the user wants to keep
—--track of.

type hgende is private;
-=5n agenda io simply a collection of agenda racords.

Hull_infe List : cenastant Info TList;
Wull Agends _Rec : constant hgenda_Rec:

Hull Agonds : conatant Agenda;

Reusahibity Librery Frasework AdaTAU 08 June 1990

4 el

AdaTAU User’s Manual 53

Operations

Create_ Agenda
creates an empty agenda.

Add_Item
places an item on the agenda.

Copy) . . .
this name is overloaded with three opcrations; one copies an info_list, one copies an agenda_rec and
one copies an entire agenda; each creates ar identical, but separate, copy of its input parameter.

Null And Free
replaces an agenda with a null agenda, freeing any dynamic storage occupied by agenda contents,

Delete Weightiest _Recorxd
removes the weightiest agenda record (including an agenda item) from an agenda and returns the
record.

Delete_One_Record
deletes a given agenda record from an agenda.

Dump_Agenda
converts an agenda to a list of agenda items in order to more easily examine the agenda.

Reset_Info
prepares an information list for iterating.

Next_Info
retums the information structure foilowing the struciure returned by the last call to next_info in an
jrfosmytion list

More_Info
retumns e if there are more information structures that have not been returne ° by calls to next_info,

Search_Info
searches for a given information structure in an information list.

CGet_TItem
extracts the ageuda item from an agenda record.

Get_Weight
exiracts the weight from an agenda record.

Get_Info
extrasts the information list from an agenda record.

Search Record
returns the agenda record associaied with a given agenda item.

Empty (2))) . o >
this name is overloaded with two operations; onz checks whether an info_list is emipty and the other o
checks whether an agencdi ia empry.

Fquivalent_Rec
eeturmns true if ali the components of the two ageada record parameters are equivalent (using
Iten_Equiv).

Equivalent (2)
this nzame is overloaded with two operations; separate operations arc provided to check equivalence
for information lists and agerdas.

e

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 54

4.16. Basic AcaTAU Configuration

Package Name

Basic_Configuration

Description

This package brings together in one place all of the data types and operations needed by
an inferencer. All of the underlying abstract data types and their associated operations
are accessible from this package. Where necessary, generic packages are instantiated to
provide the needed data structures. This package also defines procedures to be used by
an inferencer for firing rules and for asking questions from an agenda. The firing routines
can be used to fire both Irules and Qrules. For each type of rule, routines are provided to
determine if the antecedent of the rule is satisfied (or if the rule is "primed"), to fire a
rule, to perform both these operations together, and to perform these two operations on
each rule in a rule base. The routines associated with asking agenda questions include

routines for posing a question, recording an answer, and processing that answer by assert-
ing the facts associated with the answer(s) received.

-
3 1S &

c fact b

~éd Dann~nn Aamé Daanns
LSS 1 u L g [V SR URgy i~ i 1y

ases typ= visible to user of this package

package Irule Bases is new Rule Bases
{Irules.Irule,
Irules.Null Irule,
Unique_Identifiers.Uid,
Irules.Get_1Id,
Unique_ldentifiers.Equal);

subtype Irule_Base is Irule Bases.Rule Base;
-~ the bagic jrule base type via rule_bases generic

package Qrule_Bases is new Rule Bases
(Qrules.Qrule,
Qrules.Null_Qrule,
Unique_Identifiers.vUid,
Qrules.Get_1d,
Unique_Identifiers.Equal):

subtype Qrule Base is Qrule Bases.Rule_Base;
-- the basic grule_base type via rule_bases generic

package Question Bases is new Rule_Bases
(Questions.Question, .
Questions.Null Question,
Unique_Identifiers.Uid,
Questions.Get_Id,
Unique_Identifiers.Equal);

subtype Question_Base is Question_Bases,Rule_Base;
-- the basic question_base type via rule_bases generic

Reusability Library Framewerk AdaTAU 08 June 1990

AdaTAU User’s Manual 55

‘ package Q_Rgendas is new Agendas (Unique_ldentifiers.Uid,
Qrules.Qrule,
Integer, Copy_ Uid,
Unique Identifiers.Equal,
Qrules.Copy,
Qrules.Equivalient);

subtype Question_hgenda is Q Agendas.Agenda;
-- the basic question_agenda type via the agendas generic

package User_Fesponses is new Tau_Lists (Response_Schemas.Response_Type) ;

subtype Tau_Response is Fact_Lists.Fact_List;
-- make a repsonse type visible to the user of this package

Operations
| Primed (2)
! this name is overloaded with two operations; onc operation determines if an irule is ready to fire, the
other determines if a qrule is ready to fire.
Fire (2)
this name is overloaded with two opcrations; one fires an iryle by asserting its consequent facts, and
the other fires a qrule by placing a question on the agenda.
Prime And Fire(2)
this name is overloaded with two operations; each operation checks that a rule (irule or grule respec-
O tively) is ready to fire, and then, if it is, fires it
Fire_Base (2)
this name is overloaded with two operations; for each :ule in the rule base (irule_base or qrule_base
sespectively), it is first determined if the rule is ready to fire and then, if it is, the rule is fired,
Pose_Question
poses a question (o the user.
Record Response
takes an answer or answers from the user.
Process_Response
asserts the facts associated with each answer.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 56

@ 4.17. Generic Advanced AdaTAU Configuration

Package Name

Advanced_Configuration
Description
This generic package brings together in one place all of the data types and operations, .
beyond those provided in the Basic_Configuration, needed to support a distributed ¥
TAU-style inference system. All of the new underlying abstract data types and their K
associated operations are accessible from this package. Where necessary, generic pack-
ages are instantiated to provide the needed data structures. This package also defines
procedures to be used by an inferencer for firing rules and for dealing with the focus
agenda. In particular, this package defines the abstract data type inference context. An
inference context collects all of the individual rule bases, as well as a local agenda main-
taining the state of interaction with the user, so that a Think - Ask - Update style infer-
ence scheme can be applied to multiple distributed rule bases. The basic rule base ident-
ties established for a centralized version of AdaTAU are imported from
Basic_Configuration. This package defines an frule base used to provide rule base con-
text switching, as well as the inference context definition itself. There is also is an inter- _
nal unique identifier for each inference context which is generated when the inference Y
context is created. Routines are provided to create an inference context, to exiract the
‘ various components from an inference context, and to change the label of an inference
context We define an operation to fire FRules. As in the case of IRules and QRules, rou-
tines are provided to determine if the antecedent of the rule is satisfied (or if the rule is
"primed"), to fire a rule, to perform both these operations together, and to perform these
two operations on each rule in a rule base. The routines associated with the focus agenda
provide for evaluating the agenda to see if a pending focus switch should be processed,
packaging up the data structures providing the state of the local inference process, and
decomposing an inference state description as extracted from the global agenda.

Objects

package Frules_Inst is new Frules {Context_Reference_Type,
Null Context_Reference, Copy_ Reference,
Equal_Reference);

subtype Frule is Frules_Inst.Frule;

package Frule Bases is new Rule_Bases (Frule, Frules_Inst.Mull Frule,
Unique_Identifiers.Uid,
Frules_Inst.Get_Id,
Unique_Identifiers.Equal,
Frules_Inst.Equivalent):

subtype Frule_Rase is Frule_Bases.Rule_ Base;

e type Inference Context is private;
-~A context includes the associated rule bases as well as question
--base necessary to provide for an inference process to take place

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’'s Manual 57

0 package F_Agendas is new Agendas
(Context_Reference Type, Frules_Inst.rrule_Switch_Context, Integer,
Copy_Reference, Equal_Reference, Frules_Inst.Copy_Frule Switch_Context, '
Frules_Inst.Equal_Frule_Switch Context):

subtype Focus_Agenda is F_Agendas.Agenda;

package F_Suggestions is new Tau Lists (Frules_lInst.Frule_Switch_Context);
subtype Focus_Suggestions is F_Suggestions.Tau_List;

Null_ Context : constant Inference_Context:

Null_Focus_Suggestion : constant Focus_Suggestions :=
F_Suggestions.Null_List;

Operations .
Create i
creates a new inference context with the given components. B
Copy
retumns a inference context which is identical to, but separate from, context.
Put_Context_ Reference_Id

imnnetn n Anntawt mafamannr id inta an infamnss Aantast
ABAA LD & VAJIHIWWAL L wiviviivAr AW LW/ QU AW WIIVAY WATSEE Ay

Put_Imports
° inseris an import fact parameter list into an inference context.
Put_Expnrts
insexrts an export fact parameter list into an inference coniext.
Put_Irule Base
inserts an irule base intc an inference context.

Put_Qrule Base
inserts a grule base into an inference context

Put_Frule_PBase
inserts an frule base into an inference context.

Put_Question_3Base
inserts a question base into an inference context.

Put_Fact_Base
| inserts a fact base into an inference context.

| Put_Schema
. inserts a fact base schema into an inference context.
‘ Put_local_Agenda
inseris & question agenda into an inference context.
Update_Agenda
update the agenda for the context with a new ageada.
Get_Context_ Reference_Id
returns the context’s application id.
Get_Imports
0 retrns the context’s import fact parameter list.

Get_Exports
returns the context’s export fact parameter list.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 58

Get_Table Id

returns the context’s table identifier.
Get_Irule Base

retums context's irule_base.
Get_Qrule Base

returns context's grule_base,
Get_Fact_Base

reiurns context’s local fact base.
Get_Question_Base

renuns context's question_base.
Get_Frule_Base

returnis conlext’s frule_base.
Get__Schema

returns context's fact base schema.
Get_Local_Xgenda

rems context’s local question agenda.
Equivalent

returns true if all of the components of the two context parameters are equivalent.
Primed

attempts to satisfy the antecedent of rule. It scarches fbase for each of the facts in rule’s antecedent.
If it successfully finds them all, then it retums true.

Fire
fires rule by adding the associated context switch suggestion to context_switch_suggestions.
Prime And Fire
first checks rule to see if it is primed and then, if it is, fires it.
Fire Base
for each rule in rbase, the antecedent of the rule is first checked, using fbase, and then, if the
antecedent can be satisfied, the rule is fired.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 59

‘ 4.18. RLF Instance of Advanced AdaTAU Configuraticn

Package Nanxk
Librarian_Configuration

Description

This package declares an application-specific instance of the advanced_configuration L
package. In particular, a specific type: a context identity is passed as a generic parameter s
whose values serve to identify particular inference contexts within a larger application B
specific data structure. This particular example is designed to provide an interface B
between the AdaKNET subsystem and AdaTAU where inference contexts are associated R
with generic concepts within an AdaKNET network. The Adanet_Object_Name_Type
from the Adanei_Name_Types package serves as the context identity for the ‘
Librarian_Configuration.

Objects _

package Lib_Hybrid is new Advanced_Configuration
{Adanet_Name_Types.Adanet_Object_ Name_Type, '
Adanet_Name_Types.Null Adanet_Object_Name,
Adanet_Name_Types.Copy_Adanet_Object Name_Type,
Adanet_Name_ Types.Equal Adanet Object Name_ 7Type):

‘ subtype Lib_Frule is Lib Hybrid.Frule;

subtype Lib_Frule Base is Lib Hybrid.Frule_Base;

subtype Lib_Inference_Base is Lib_Hybrid.Inference_Context;

subtype Lib Focus_Agenda is Lib_Hybrid.Focus_Agenda;

Null Lib Inference_Base : constant Lib_Inference_Base :=
Lib Hybrid.Null_Context;

subtype Lib_Inference_Base_Id is Adanet_Name_Types.Adanet_Object_Name_Type;

subtype Lib_Fact_Parameter_List is Fact_ Parameter Lists.Fact_Parameter List;

Reusability Library Framework AdaTAU 08 june 1990

B

+4aTAU User’s Manual 60

4.19. Component Persistance Management

Package Name
Persistence

Description

This package contains routines 10 store and retrieve AJaTAU data objects to and from :
files. Routines are provided to save and restore fact bases, fact base schemas, Irule bases, A
Fact Parametcr Lists Qrule bases, Frule bases, question bases, and agendas, as well as to

save an entire AdaTAU session. This package also renames and re-exports various Free
operations {0 manage memory.

Objects

subtype Inferencer Name Type is String (1..80);
- Provides name type to associate with named files

Operations
Is_Saved
retums true if inferencer_name corresponds to an inferencer that has been previousiy saved.
Save_Labels (2)
saves labels and unique identifiers comesponding to fact base schemas and fact bases respectively to
a file.

Save_ Fact_Base
saves a fact base and its associated fact base schema,
Save_ Fact_DBase Schema
saves a fact base schema.
Save_Irule Base
saves an irulc base.
Save_Qrule_Base
saves a grule base and its associated question base.
Save_Frule Base ..
saves an frule base.
Save_Question_Base ’
saves a question base.
Save_Agenda
saves a local question agenda.
Save_Fact_Parameter Lists
saves the import and export fact parameter lists.
Save_Inferencer
saves an irule base, a grule base, a question base, and an agenda.
Initialize_Base
initializes an empty fact base using a label and identifier retrieved from a file.
Initialize_Schema
initializes an empty fact base schema using a label and identifier retrieved from a file.

Load_Fact_Base
loads a fact base an its associated fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU Usi. 's Manual 61

Load FBase Schema
loads a fact base schema.

Load_Iruvle Base
loads an imle base.

Load Qrule_ Basze

loads a gruls base and its associated question base.
Load_Question_Base

Joads a question base.
Leoad_Ahgenda

loads a local question agenda.

Load Frule_ Base
Ioads an frule base.
Load_Fact_Parameter_ Lists
loads the import and export fact parameter lists.
Load_Inferencer
Ioads an irule base, a grule base, a question base, and an agenda.
Restart_Inferuncer
lcads the irule base, qrule base, question base, and agenda from files.
Free_Fact_Base
makes fact bas~ *, null fact base and releases any storage occupied by the fact base.
Frec_Cbase_Schema
makes fact base schema 2 null fact bace schema and releases any storage occupied by the
schema,
Free_Irule_Base
makes irule base a null irule Dasc and releases any storage occupied by the irule base.

act hace

Free_Qrule_Base
makes qrule base a null qrule base and releases any storage occvpied by the grule base,

Free_Question_Base

makes question basc a null question basc and releases any storage occupicd by 1he quesiion base.
Free_Agenda

makes agenda a null question agenda and relcases anv storage occupied by the questivn ageada.

Frec_Inferencer
releascs all storage occupied by the irule base, grule base, question bas:, fact base, and qu.stion
agenda.
Free_Frule Hase
inakes fivle basc a null frule base and releases any skwage occupied by the frule base,
Free Fact_ Parameter Lists
makes Imports ard Exports Null fact parameter lists.

Reusability Library Framework AdarAll 03 June 300

AdaTAv) User's Manua! 62

4,2]. 4asic AdaTAU Persistance Management

Package Name
Static_Persistence

Description
This package provides high-level load/save operations for AdaTAU inferencers.

Objects

subtype Inferencer_Kame_Type is Persistence.Inferencer_Name Type:

Operations

Save_Inferencer
saves all the input objects in files.

Load_ Inferencer
loads the irule base, qrule base, question base, and fact base schema from files,

Free_Inferencer
releases the memory occupied by the irule base, qrule base, question base, and fact base schema.

Reusability L:brery Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 63

4.21. Distributed AdaTAU Persisiance Management

Package Name
Lib_Static_Persistence

Description

This package provides high-level ivad/save operations for Librarian/distributed AdaTAU [
inference bases. w

Objects

subtype Inference_Base Name_Type is
Adanet_Name_Types.Adanet_Object_Name_Type;

Operations

Save_Inference_Base
saves an inference base in files,

Load_Inference_Base
loads an inference base from files.

Free_Inference_Base
reicases ihe rnemory occupied Dy an inference base.

48 Reusability Librory Framewovk AdaTAU 03 Jsne 1990 g

G

AdaTAU User’s Manual

4.22, Reverse RBDL Translator

Package Name
Dump_Tau_Components

Description
This package provides operations to generate a listing of an AdaTAU knowledge base
consisting of rule bases, question base, fact base schema and fact base to the currently
assigned output file (the operator’s console by default). This listing is produced in RBDL
format, suitable for input to the RBDL processor for initializing the internal representa-
tion required to execute AdaTAU.

Objects

-- none exported by this package

Operations
Dump_Fschema
list a single fact schemna (normally as part of a fact base schema).

Dump_ Fb_Schema

list an entire fact base schema.
Dump_Fact

list a fact (normally as part of a fact list included in a rule description).
Dump_Flist

list an entire list of facts (normally as part of a rule description).
Dump_Fbase

list an enuire fact base.
Dump_ Irule

list an IRule description (normally as part of a rulg base description).
Dump_Irbase

lis; an entice IRule base.
Dump_Rscheams

list a response schemna {(nomally as part of a question description’
Dump_Question

list a question (ncrmally as part of a question basz, or an individual QRule).
Dump_Qrule

list a QRule description (normally as pari of a rule base description).

Dump_Qrbase
list an entire QRule base.

Dump_Qbase
list an entire question base.

Dump All
provide a complete RBDL description of an AdaTAU! knowledge base including IKule base, QRule
base, question base, fact base schema, and fact base.

Reusability Library Fram_work AdaTAU 08 June 1990

AdaTAU User’s Manual

4.23. AdaTAU Inference Cycle Components

Package Name
Tau_Cycle_Components

Description

This package provides the three subprograms that imnplement the Think - Ask - Update
operations. These operations are basic to tiie rule-based infercnce approach planned for
the Reusability Library Framework. Rules must be provided as distinct 1Rule and QRule
bases. All of the operations exported here are composite aperations built from primitives
supplied in the basic_configuratior.. The structure of these composites is defined by the
inference mechanism summarized by Think - Ask - Update.

Objects

-- no nev cbjects are exported

Operations

Think
provides for a forward-chained generation of facts bascd on a current fzct base, and suppl'ed wule
bases. When Think retwrns control to its cailer, no frable rules exist in either rule bese, and no
further modifications to the fact base are possible pending processing of the agenda.

Ask
handles interaction with a user, based on an agenda of user queries wlich are scheduled as a result of
rules fired during the Think phase. Ask delivers 4 response object that will be processec by Update.

Update
modifics the fact base based on & user’s response roorded during Ask. Upcate alsu provides tiuth
mainicnance o ¥eep the fact base consistent after user derived modilications have been processsed.

Reusability Library Framework AdaTAU 05 Sune 1999

AdaTAU User's Manual

4.24. Distributed AdaTAU Inference Cycle Components

Package Name
Dtau Cycle_Components

Description
This package provides several additional subprograms that along with the Think - Ask -
Update operations, provide the basic services of the distributed, rule-based inference
approach used by the Reusability Library Framework. In particular, these operations
provide for the processing of focus rules, and handling of focus switches to other rule
bases.

Objects

~- Nio new objects are exported

Operations
Think_ After
provides for a forward-chained generation of facts based on a current fact base, and supplied rule
bases. When T .ink_After retums control to its caller, no firable rules exist in either irule or frule
bases, and no further immegiiate modifications to the fact base are possible before cither prucessing
the local agenda or perfoiming a context switch,

u&\ Accquire Tau _Context

%ﬁ The inference base parameier indirecily provides a handle to the individual TAU components that
enghle a local investigation to be begun or continued. Acquire_TAU_Context transiates this handle
to the actual object instances required.

Save_Tau_Context

yiovides 2 mears of depositing the local state information about a local investigation just before a
context switch is gbout to be made. In particular, the focal agenda is likely to have changed since the
current investigation wes hegur or resumed. Save_TAU_Context ucss the inference base haidie to
save inforrnation that can be nucalied later.

Eva’_Focus
Froan the focus agenda, Eval_Focus will prodixce the curreat top two choices for further local investi-

gation.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 67

4.25. AdaTAU Basic Infercnce

Subprogram Name
Tau

Description

The Tau subprogram provides a basic entry point to the rule base services provided by
AdaTAU. The main modules employed by TAU (Think, Ask, Update) are themselves
encapsulated in a separate package (Tau_Cycle_Compornents). The rule base facilities
that are defined by AdaTAU are made available through the basic_configuration package.

Tau
is organised according to the Think - Ask - Update paradigm. This approach
delays user interaction as long as forward-chained piug:oss occurs using the avail-
able mles (Think). User interaction is managed through the use of an agenda struc-
ture. User responses are processed by one module (Ask) while consequent changes
to the fact base are handled by another (Update). The basic loop continues until
the agenda is exhausted, and no further fact derivations are possible.

Reusability Library Framework AdaTAU 08 June 1599

AdaTAU User’s Manual 68

4.26. Distributed AdaTAU Inference

Subprogram Name
Dtau

Description

The DTAU subprogram provides a basic entry point to the distributed rule base services
provided by AdaTAU. The main modules employed by DTAU are themselves encapsu-
lated in a separate package (DTAU_cycle_components). The rule base facilities that are
defined by AdaTAU are made available through the basic_configuration package as well
as an additonal package of basic services for use in a distributed setting: an instantiation
of advanced_configuration.

Dtau

provides a skeletal distributed rule base inference plan that expands upon that pro-
vided in standard TAU. From the current global agenda, DTAU determines an ini-
tial TAU context in which to begin. A basic TAU sequence is invoked, refocus
suggestions produced after any primed FRules are fired are merged with the global
agenda, and an inference base at which to continue inferencing is determined.
Focus switches take place when a global agenda item is at the head of the global
agenda and there is no data that suggests this pending context switch should be
ignored. After each such context switch, the basic TAU sequence is executed at
least once. The current implementation supports an eager surrender strategy where
any pending context switch is execuied regardless of the local agenda. The basic
loop continues until both the current local agenda as well as the focus agenda are
cxhausted.

Reusability Library Framework AdaTAL 08 June 1990

AdaTAU User’s Manual 69

5. AdaTAU Specification Language — RBDL

The AdaTAU inferencer manipulates many different objects of different types. The
different types of objects are described in the Abstract Data Types description in this
document and by the Ada package specifications themselves. Before the inferencer can
begin the Think-Ask-Update process, instances of these objects must be created, tailored,
and initialized. Operations are provided to do this, but the knowledge enginecr must
guide this process by specifying the numbers and types of objects to be created, specify-
ing various properties which tailor the objects to a specific application, and supplying the
values which are to be used 1o initialize the objects. The RBDL (Rule Base Definition
Language) provides a simple vehicle for the knowledge engineer to use to accomplish
this task. The specification language is used to specify exactly what objects are to be
created, 1o manipulate various properties of these objects, and to give them initial values,
where appropriate. ‘The RBDL processor translates the RBDL specification provided by
the knowledge engineer into calls to routines in the ADT package specifications which in
turn create and manipulate the objects.

RBDL specifications are translated into an executable Ada procedure by the REDL
processor program. This program is itself written in Ada and when compiled provides
the RBDL translation capability. The RBDL processor program is included with this
version of AdaTAU.

RBDI provides the means to spacify the content of inference bases that are used to
conduct a TAU-style inference directed toward manipulating and updating a global fact
base. RBDL also supports the use of multipie inference bases that communicate with
each other through the use of fact parameters and the firing of focus rules. RBDL
specifications of the state of an 4AdaTAU session can also be generated by AdaTAU icself
to stand as a basis for comparison between a start-up state for an AdaTAU session, and
the final state after no further inference progress is possible. Note that the current version
of distributed AdaTAU does not support the generation of RBDL corresponding to the
state of a distributed inference session. Using an editable inference base description, it
will be possible to run AdaTAU from the point it left off, after appropriate new rules or
facts are entered directly into the saved RBD specification.

The Backus-Naur Form of the RBDL syntax is provided in Appendix A. The syn-
tax was designed to resemble Ada code as much as possible. RBDL provides a declara-
tive syntax for the specification of rule bases and fact bases. RBDL specifications ave
themselves trauslated to calls on specific routines that are included in the various Ada-
TAU ADT packages which are described in the implementation level section. An Ada-
TAU RBDL specification consists of 2 set of definitions that are of several basic types:
initial fact base definitions, fact base schema definitions, question base definitions, rule
base definitions, inferencer definitions and fact parameter definiticns. A single
specification can contain any number of question base or rule base definitions. However,
an RBDL specification file may contain only one instance of a fact base schema
definition or an initial fact base definition.

Fact Base Definitions

A fact base can be defined by providing an identifier for it, an identifier specifying a
fact base schema that will define the structare of the fact base, and the facts to be used to

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 70

initialize the fact base. The fact base schema identifier must correspond to a previously
defined fact base schema and the facts must be consistent with this schema. The RBDL
processor will use the “Create” function provided in the fact bases package to create the
new fact base and to associate the specified fact base schema with it. Then the “Install”
routine will be used to put the specified facts into the fact base, one at a time. If the
knowledge engineer wishes to define an empty fact base, the keyword “null” can be used
in place of the list of initial facts.

Fact Base Schema Definitions

A faci base schema definition basically consists of a set of attribute definitions. For
each attribute, the knowledge engineer must specify a name, a type, and a list of values
that can be associated with that attribute. All the attribute names must be unique within
the fact base schema. The type of an attribute indicates whether the attribute can take on
just one of the listed values, any number of the listed values, or any value at all (in the
last case, no value list should be provided). The list of values is simply a list of text
sirings. If several different attributes have the same type and the same value list, then the
names of these attributes can be grouped together and the type and value list specified
just once. Of course, an identifier must be provided for the fact base schema as well. To
create a fact base schema, the RBDL processor will create a structure of the type
fact_base_schema, provided in the fact_basec_schemas package, and initialize it with
other operations from this package.

Question Base Definitions

To define a question base, the knowledge engineer need only provide a list of ques-
tion definitions. For each question, an identifier, the text of the question, its type, and the
list of possible responses must be provided. The type of a question is similar to the type
of an attribute. It indicates if the question can be answered with exactly one of the listed
responses, any number of the listed responses, or with any response at all (in the last
case, no response list should be provided). For each response in the response list, the text
of the response must be provided, as well as a list of facts that will be asserted when this
response is received.

The RBDL processor will first use the “Create” routine in the Question_Bases pack-
age (an instantiation of Rule_Bases) 1o create an empty question base. Then, for each
question specified, a varable of type response_schema, provided in the
response_schemas package, will be created and initialized. The fact lists that are part of
the response schema will be created using “Create” and “Buil._List” from the Fact_Lists
package (which is an instantiation of the Tau_Lists generic package). This structure will
then be used by another “Create” routine in the questions package to create a question.
Finally, the question will be put in the questioi base using “Instzll” from the
Question_Bases instantiation of Rule_Bases.

Rule Base Definitions

Rule bases, and thus rule base definiticns, come in three types: IRule (inference
rule) bases, QRule (question-asking rule) bases, and FRule (focus rule) bases. Either
type of definition must provide an identifier that names the inference base. An IRule
base definiton mast also provide a list of IRule definitions, each of which consists of two

Reusability Library Framework AdaTAU 08 June 1990

AdsaTAU User’s Manual 71

lists of facts (representing the antecedents and consequents) and a textual justification for
the rule. Similarly, a QRule base definition consists of a list of QRule definitions. Each
QRule definition must include a list of facts representing the antecedents of the rule, an
identifier referring to a questicn (which must be previously declared as part of a question
base definition), a numerical weight which will be associated with the question when it is
put on an agenda, and a textual justification for the rule. Frules are structured like
QRules cxcept that instead of a question identifier, an FRule declares a focus identifier
that names another inference context. An FRule may optionally name an export fact list
whose contents are added to a fact iist which is used in conjunction with fact parameters
to control how information is passed between cooperating inference contexts.

To create an empty rule base, the “Create” routine from the appropriate instantiation
of the Rule_Bases package will be used. Then each rule will be created using another
“Create” routine in either the IRules, QRules or FRules package. Again, the fact lists
that are part of the rules will be created using “Create” and “Buiid_List” from the
fact_lists package. Finally, each rule wiil be will be put in the rule base using “Install”.

Fact Parameter Definitions

Within an inferencer definition, fact parameters are identified by name as well as
parameter class within distinct inference contexts. The collection of local contexts
defines a global inference environment and fact parameters provide a method by which
information (facis) are exchanged between individual local inference bases. Within an
inference context description, a complete list of fact parameters for the local context is
declared, where the list is organized according to whether the parameter is imported or
exported.

Using RBDL

From a RBDL specification of a local inference context, the RBDL processor pro-
duces an Ada procedure called Initialize_TAU_Components which includes the neces-
sary calls on the operations provided within AdaTAU to build the required rules bases,
guestion base, fact base schema and initial fact base, and make these persistent for use by
an application needing rule base services. The body of the procedure makes all the
necessary translations of the parameters to underlying data structures and makes any
necessary initializations. This procedure is embedded in an Ada library unit (main pro-
gram) which prepares the resulting fact base for use by the application. More informa-
tion on actually using RBDL to create an application-specific rule base description and
integrating it with an application that uses AdaTAU'’s programmatic interface is given in
the nexi section.

The use of RBDL to support distributed inference base description and processing is
also possible. In particular, the RBDL processor can be used o process multiple infer-
ence bases individually, and a client application can use the DTAU procedure to initiate
in ‘erencing at one of them.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manusl 7

6. Using AdaTAU

In order to use AdaTAU effectively, it is advisabie to prepare RBDL specifications
for the fact and rule base components that AJaTAU is equipped te process. One can
directly make usc of primitive AdaTAU operations to define the necessary knowledge
base components, but to do so requires handcoding a large number of Ada procedure
calls, RBDL is provided so that a rule-based application can be conswucted declara-
tively, using a template main program that requires few, if any, modifications. This sec-
tion describes how one can start with a template main program and a RBDL specification
file, and produce a working Ada program that is able to interact with the user and make
corresponding inferences based on the available facts and rules.

If the AdaT AU subsystem is to be embedded in a larger Ada application, then direct
calls to the relevant AdaTAU operations must be provided by the application designer.
Programmers wishing io use AdaTAU in a larger application should consult the ADT
descriptions given in section 4 of this manuval. AdaTAU is targeted for these sorts of
embedded applications and the stand-alone example given in this section is meant to

Ada Initializer Persistent
RBDL Spec Procedure Inferencer
~

;
= &

Aprlication
Designer

Ada Main Other AdaTAU

Procedure Cortiponents
AdaTAU o

. Application
ppli and Interencer
Data files
User

In-Memory
Data Siructures

Figure §. Creating an AdaTAU Application

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Manual 73

show the integration methodology to combine statically declared rule base components
with Ada code that processes intemal forms of derived fact and rule bases. To show that
this intemai processing is performed correctly, the example invokes a handwritten
reverse RBDL wranslator that writcs out RBDL representations of the final forms of the
derived fact and rule bases. A complete transcript of an interactive session to produce
and run an AdaTAU application is presented at the end of *.is section.

The necessary steps to build a working AdaTAU application are claborated in the
next three subsections. These steps can be summarized as follows (see figure 5).

1) Use an ordinary text editor to prepare a RBDL specification file. This file contains
a descripton of rule bases, question bases, a fact base schema and an initial fact
base (if any) that support the domain.

2) Execute the RBDL processor on the specification file to yield an Ada procedure
capable of initializing all necessary components required before AdaTAU opera-
tions can be applied to the domain captured in the RBDL specification.

3) Compile and execute the RBDL output to produce a persistent form of the RBDL
inferencer for use by the application.

4) Using Ada with clauses as appropriate, create an Ada main program which con-
tains a call to the AdaTAU persistence routine that brings an inferencer into
memory for processing by AdaTAU. Include references to any other AdaTAU
operations that are required Dy the appiication. Typicaiiy, one of these operarions
is the TAU procedure itself which provides the Think — Ask — Update inference
mechanism (or DTAU if the application makes use of multiple, distributed
inferencers). The Dump_RBDL operation is uscful to check that all of the
expected rule bases, as well as a final fact base, have been installed and processed
correcily.

5) Compile and cxecute the desiied application program. The user interacts with the
program, and depending on the AdaTAU components chosen, persistent versions
of the in-memory data structures can be saved and restored from disk files.

Using the facilities of distributed AdaTATU requires that steps 1, 2 and 3 be repeated
for each of the localized infercnce tases anticipated by the application designer. In addi-
tion, the application designer must provide an application-specific scheme for locating
the various inference bases within the applications own data structures. The interested
reader is advised to consult the RLF Librarian user manual for a discussion of one
method of distributing and coordinating the use of multiple inference bases. The rest of
this section assumes that only a single inference base is under consideration, so that none
of the facilities of RBDL that support distribution of, and communica:ion between, infer-
ence bases are relevant.

6.1. Creating AdaTAU Knowledge Bases

Appendix B contains an extended, non-distributed RBDL example showing each of
the major RBDL divisions. Whenever AdaTAU is to be applied to a new domain, it is
necessary to consider the essential information that is to be tracked and maintained about
this domain and the rules by which new information about this domain is to be deduced.
The example captures some relevant information concerning the taxonomy of general

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual 74

Ada components presented by Grady Booch in his recent book {Booch87].

This RBDL knowledge base is prepared by entering it into the system text editor.
The preparer of a RBDL specification should be careful to obey the syntactic rules of
RBDL so that the RBDL processor can smoothly translate the specification into the
necessary Ada calls. However, if a mistake is made in the RBDL specification, an error
message is reported on the user’s console with a line number indicating the approximate
location of the offending statement. The RBDL processor is currently limited in the way
such errors are reported and a new user may find that only the first error is reported even
when the RBDL source contains several such errors. When the RBDL processor finds no
syntax errors, the RBDL processor performs sorae semantic error checking on the RBDL
specification. The current version of the RBDL processor performs minimal semantic
error checking. Semantic errors not caught at generation time will be caught at run-time
by the appropriate AdaTAU routines. It is expected that later versions of the RBDL pro-
cessor will provide more robust semantic error checking with a corresponding lessening
of reliance on AdaTAU run-time error checking.

RBDL is invoked simply by executing
rbdl < ~-file_ name-
where -file_name- is the name of file containing the RBDL source. If there are no errors,

1bdl produces an Ada source file called rbdlprog.a. This file contains an Ada procedure
Create_Inferencer which includes a local subprocedure with header:

procedure Initialize TAU_Components

(FB_Schema : out Fact_Base_Schemas,Fact_Bagse_Schema;
Question_base : out Basic_Configuration.Question Baae;
Irule Base : out Basic_Configuration.Irule_Base;
Qrule_Base : out Basic_Configuratien.Qrule_Base;
Frule_Base : out Librarian Configuration.Lib_Frule Base;

Initial_ Fact_Base : out Fact_Dases.Fact_Base;
Import Fact_list : in out Fact_Parameter_ Lists.New_Lists.Tau_List;
Export_Fact_list : in out Fact_Parameter Lists.New_iists.Tau_List)

In addition, RBDL generates the necessary Ada with clauses to enable this procedure
to he compiled in the context of other necessary AdaTAU source files, This file should
be compiled with the entire AdaTAU library visible during the compile process. After
the user compiles and executes the Create_ Inferencer main program, a persistent
form of the AdaTAU inferencer defined by the RBDDL specification is created that is then
processed by the application as required. The application program that makes use of the
RBDL rule base specification should include a with clause referencing the necessary
operations to bring the inferencer into main memory and to initialize the necessary
run-time data structures.

6.2. Building an AdaTAU Application

Once the RBDL-spccified AdaTAU knowledge base has been created by running it
through the RBDL processor, the application-specific code must be written and com-
piled. In its simplest form, an application must contain a call on the routine in the Ada-
TAU persistence package to bring an inferencer into memory for processing. Alterna-
tively, if an inferencer is being developed to be used in the context of a number of disti-
buted inference b.ses, the name of the inferencer can be used to locate and retrieve an

Reusability Library Framework AdaTAU 08 June 1950

is

2daTAU Uter’s Manual 1€

@ inferencer for prucessing by ¢ .2TAU procedure. The following saviple main program
simply illustrates this process, and includes a minimal amount of exta code.
with Basic_Configuration, Fact_Lists,

Dtau, Dump_Tau_Conponents,

¥ined_Strings, Commonio, Lib Static_Persistence, Ulibrarlan_Configuration;
use Basic Configuration;
procedure fbd) _DTAU_Test_Driver is

use Jommor.io;

Wo-king_Fact_Base : Tau_Fact List := Fact_Lists.New_Lists.Create_Tau List;

Clobal Ag : lLibravian_Configuration.lib_Focus_Rhgenda :=
Librarian Configuration.lib Hybrid.F_Agendas.Create_Agenda:
E:plain_LTAU : Librarian Ceonfijuration.Lib Hybrid.Explain DTAU_record

:= (%.ue,trae,true,false);
Context_Name : Lib_statlc Persistence.Inference_Base_Name Type;
Len : Integer;

bagin

Commonioc.Put_Message
("What context should this test start with?™):
Commonjo.Put_Message (" (please use all lower case characters)™);
Commonio.Prompt;
Context_Name := Fixed Strings.Pad (Commonlo.Get_String, Context_Name’LENGTH);

DTau (Working Fact_Basc, Global Ag, Context Name, Explain_DTAU);
Lump_Tau_Components.Durp_Flist (Working Fact Base);

end Rbdi_DTAU_Test_Driver;

Notc that in this example, the Working_Fact_Base is initially enipty. However, any iai-
1ial fact basc that was saved when the inferencer was created will be restored as DTAU
begins execution. The basic 171 AU-style inference procedure wili be exccuted using the
internal forms of the individual fect, question and rule bases. Finally, a simple dump of
the resulting fact: will be wiitten by the proccdure Dump_Flist found in the included
AdaTAU package Dump_Tau_Components.

Ncither of the latter routin=s is required; however, some m.ethod niust be cmployed
to create internal forms of the required AdaTAU objects. Any of the individual AdaTAU
opcrations can be exceuted by the application, and the information produced by these
opc.ations (typically new facts) can be “harvested” in a manner consistent with the appli-
cation. The exzcui’on of Tau or Dtau can change only the fact base component so that
the other AdaTAU components will reinain unchan~ed from their initial stats.

6.3. Sample Sesston

This subtecuon shows u sample transeript, using the Verdix Ada Development Sys-
tem (VADS) ona Sun worksiation, that thustrates the process of creating the beginnings
of a disiribated AdaTAU -based application. Befors exceating an RLE tool, the UNIX
cnvitonment variable RLE_LIBRARILS must be sct as appropriate. Consult the Version

Keusubitity Liviary ¥rames.an h AdaTAU 08 June 1990

AdsTAU User’s Manual 76

Description Document for infounzation about the use of environment variables within the
RLE.

Only one inferener will be crcated during shis script. Other inferencers can be
created by followiag the steps shown in this scction. It is assumed that a text =ditor has
been nsed to prepare a RBDL specification file (appendix B was vsed in preparing this
sample sessiony. The application-specific main program must also have been prepared
(tae sample fruom the vreceding scction was used for this transcript). User entered texi
jollow, the system hoai name prompt (% in this example). Explanatory remarks abcut the
trans >ript are given i lines begun with the Ada comment delimiter *--".

~= Run the RBDL processor on a RBDL source file.
% rbdXl < booch_exzmple.rbdl
-- RBDYL regoonds as follows (wnen there are no errors in RBDL source).

farsing input.

Parsing completed successfully.
Entering attribute evaluaticn phase.
Exiting attribute evaluation nphase.

-~ RBDL generates an Ada source file which is transferred to the directory
-- in which the RBD" application is to be compiled.

~- Compile the generated RBDL source file in a properly initialized
~= Ada library.

% ada -v rbdlproeg.a

~- The ncme of the main subprogram is create_inferencer. The main

-- hda library containing tbe AdaTAU files which the currxent Ada library
-~ refers to must include a reference to the interrupts.o c¢bjsct file

-~ included in the RLF distribution.

% a.ld create_infereacer intervupts.o
-- Next, the inferencer is made persistent by executing the object Sile.
% a.olt

== Using the make facility provided in VADS, build the desired AdaTAU
-- application using the required AdaTAU source files.

== In this example, a simple test harnecss is being generated.

-~ The top-level procedure is called Rddl DTAU Test_Driver and the

-=- resulting object file i3 called DTAU_test.

-~ The full AdaTAU llbrary rust be available in this directory lir. ordeox
-~ to huild the application.

% a.make -v PFLdl_DTAU_Test_Diiver -o DTAU_teat ~f dist_rbdl_rust.a

-= VADS roaponds as follows, showing succasasful compllaticns and final
-~ link.

finding dopondoents of: dist_rldl_tost.a
compiling dist _rbdl tost.a

Reusability Library Framework AduTAU 08 June 190

AdaTAU User’s Manusl 7

pody cof rbdl_dtau test_driver
spec of rbdl_dtaeu_test driver
/sia/vads5.5/bin/a.ld rbdl_dtau_test_driver -¢ DTAU test
-- The user now executes the generated program
% DTAU_test
-=- Respond to the prompt with the name of the inferencer to begin with.
What context should this test start with?
(please use all lower case characters)
> booch_taxonomy

-- booch_taxonomy is the name of the infereucer es given in the RBDL file.

-- Note that in the display below, the ¢xplanations provided by the Test
-~ program arxe not shown to reduce the included cutput from the tesc run.

~=- The example applicaticn walks the uger thxough a poartion oif Giady
-~ Bonch's corponent taxonomy, asking questions as scheduled through
-~ the fiizing of QRules. The user eventually specifies ¢ne of the
-- available Bouch components.

What is the component type?

1. a3yructure
2. tool
3. subsystem

Typz in the number of your response:

Pl
Is the wol a

=

utility

fiiter

pipe

sorting tool
searching tool
pattern matching tool
cther

L B N F oI - N U O

Type in the nurmber of your response:

> U

Are Lhe scemantics of the component preserved when more than une
thread of control exists?

l, yes
2. 1no

Type in the number of your responsc:

> 1

Does the component guarantee mutual exclusion, ur does tho uscer have
Lo ensure mutual exclusion

Reusebility Library Framework AduTAU 08 June 1999

AdaTAU User’s Manual 78

1. mutual exclusion guaranteed
2. user must provide mutual exclusion

Type in the number of your response:.

> 2

Do obljects that are part of the compcnent have a size that is static
throughout the object’s lite, or does the size cihnange dynamically?

1. size is static
2. size changos dynamically

Type 3in the number of your responge:
> 2

Does the component take care of garbage collecticn?

1. yes
2, no

Type in the number of your response:
> 1

Is an iterator provided for this component?

1. ves
2. no
3. not applicable

Type in the number of your response:
> 2

~- After the interaction is finished, the test application dumps out the
-- RBLIL upzcification, as it was originally entered, along with the final
-- fact basgse thut is generated during the interaction.

~~ This output is truncated in iLhis LransciipiL after the fact base.

FACT BASE SCHEMA 1S

component_type: ONE_OF

{ structure,

tool,

subsyatem);
granularity: ONE_9OF

(moriolithic,

polylitLiic);
stiucture_type: ONE_OF

{ stack,

queue,

string,

dogues,

rings,

maps,

sat a,

bags,

lists,

Reusablilly Library Framewerh AdaTAl 08 June 1990

AdaTAU User’s Manual 79

trees,
graphs,
other);
tool_type: ONE _OF
{ utility,
filter,
pipe,
sorting,
searching,
pattern_matching,
cther);
multiple_threads: ONE OF
{ true,
false):
mutex provided: ONE OF
{ true,
talse};
multiple readers: ONE_OF
{ true,
false)
static_size: ONE_OF
{ true,
falae);
garbage_collection _provided: CMNE_OF
(true,
fals2):
controlled: ONE_OF
(true,
false):
iterator_provided: ORE_QF
(true,)
falge);
formi: OME_OF
(s=2guential,
guarded,
concuxrent,
multiple):
fora2: ONE OF
{ unbeunded,
bounded) ;
form3: ONE_OF
{ unmanaged,
managed,
cont.rolled);
formg: CRiE_OF
(1teratorx,
noniteratox)

END ,

~= The followiang faci base iz 3 result of excculing the baaic TAY
-~ infercncer; the accval injtial fact base obtained from the RBDL
-- spocificaiion was null.

INITIAL FACT BASE indiv_fb X%

{component_type , toul),
(tool_typo , filtexr),

Reusabllity Library Framewsrk Aday A 0% June [9'4)

AdaTAU User’s Manual

(multiple threads , true),
(mutex_provided , false),
(forml , guarded),
(static_size , false),
(form2 , unbounded),
(garbnge_collection_provided , true),
{form3 , managed),
{iterator_provided , false),
(form4 , noniterator);

END inlt_fb;

IRULE BASE booch_irules IS

~— FERLEES
~- The RBDL is truncated here. Finally the system prompt returns indicating
-~ completion of the test run.

%

If there are any errors in the RBDL specification file, they must first be corrected,
and the REDL processor re-executed, before the desired application can be created. Tae
following short transcript, shows the detection of a RBDL error.

% rhdl < rbdl.example.bad

Parsing input.

syntax error on line 43 scanning Rosponses
%

Line 43 contains a misspelled keyword. Note that t.:.e syntax error processing stops after
the first error is detected. The user must correct this first error and then run the RBDL
processor again, repeating the ‘“‘correct and run sequence” until all errors have been
removed.

Rzumublity Library Framework 06 June 1599

AdaTAU Uscr's Manual

0 7. Notes

This section presents some basic background material for tic AdaTAU component
of the Reusability Library Framework. ‘The following sections present the major notions
and objects that ka v¢ contributed to the design of AdaTAU.

7.1. Facts

By faci, we mean any dynamic quantum of information that cur system must be
able to process. Typically, facts are stored in a fairly rigid forra that is designed to pro-
vide efficient access for the sysiem. Some common orgarizational schemes are
property-boolean state pairs, or attrihute-value pairs or msore ganerally, triples denoting
object names, attribute names, and corresponding values. For ¢xample, we can write
<printer_iadicator_lite_on, truc>, or <printer_indicator_lite, on> or <printer,
indicator_lite, on>.

Fact structures can be considerably more complicated. At oue extreme, one can
imagine English-like clauses, or arbitrary lis*s that can themselves contain sublists. For
cxamnple, <father_of, sani, <husband_of sarali>> can be used to represent the fact that
sam’s fatker is sarah’s husband.

KFact Bases

Cuilections of facts sre called fact bases. Fact hases can themselves b2 organized to
aid efficient rewieval and wodificacons. One conunon tacic is w provide an indexing
scheraz so that individual facts can be guickly stored and iocated.

Severai facts can each conaibute some incomplete facet of a sitvation that is o be

cpresented within the fact base. Fur example, <printer_indicator_lite, on> vs.

<prinier_indicator_lite, blinking>>. CGn the other hand, two facts can stand i contradic-
tion to one auother (<primer_indicator_lite, o> vs. <printer_indicator_lite, off>). Thus
anv sysiem employing a fact bas . * be designed to handle related facts, and to deal
with contradictory facts. Of cours. me ihed is to simply ignore any fact relatianskips
as well as any ract contvadictions.

7.2, Rules

A rule is 2 formslized statemaent that prescribes how a fact base can be changed
based on the crurent state of the fact base. A very coinmon style in whicn to specify
rules is an if A -— then B format where A gnd 3 are placeholders for ore or more facts.
For example, we can wiiie

if <waich, gotd>

then <watch, eapensive
Such a rule can be said to be primed iF the fany in the collecion 4 are all currently
withia sz fact base. Qac possible sctien within 2 rule bare system s to add &1l the facts
within B © the fact base, afier & rule beconies poinazd. Suck a rale is seid so fire.

wuie Antecederls and Cowneguicity

Those facts that romst be fresent in the fact base befoie Wi tule is sble tw fire sre
eslled the antecedent {acts. Such fects are alsy called premiscs. Analogously, those facts

Recasollity Livvary Fravwework AdsTAY 08 Junc 1990

AdsTAU User’s Manusl 82

which should be added to the fact base by the rule are calied the consequent facts. Thus,
in the if A — then B rule formalism, A stands for the antecedent facts, and B stands for
the consequents. Consequents are also called conclusions. In general, the lists A and B
can be broken up further. For example, a rule could state that some of the facts in the A
list should be absent in order for the rule to fire. Such facts would be negative
antecedents. Analogously, some of the facts in the collection B raight be identified as
facts to remove from the fact base when the mle is fired.

Ruic Bases

A complete collection of rules organized to capture knowledge in a particular
domain is called a Rule Base. Just as in fact bases, collections of rules can be organized
for efficient processing. A typical use of a rule base system is to begin with a collection
of facts as well as a collecuon of rules, and then fire the primed rules successively,
thereby causing new facts i be added to the fact base (or old facts removed). There are
scheduling problems (for exaraple, how to choose which of several primed rules to fire
first) and this direct approach of incrementally building up the fact base is not appropriate
in all cases.

7.5. Inference

The use of a rule base combined with a fact base to explore and draw conclusions
about a particular domain is called inferencing. There are two well-known inference
sirategies for rule base systems.

Forward-Chained Inference

Forward-chained inference occurs when the consequent facts of a primed rule are
automatically added to the fact base upon the firing of the rule. Forward-chained systems
typically are used in a stand-alone fashion where an initial fact base is presented to the
inference sysiem along with a collection of rules. The system then runs without explicit
user interaction and the fact base is updated as a result of applying rules within the rule
basc successively o the fact base.

o

guents should be added only if they arc not already in the fact base. However, it is useful
to store an indication that more than one rule has lcad 0 a particular fact beisig present in
the fact base (see the section on truth muintenance). When no un-primed iules remain,
further progress is not possible unless the user can be consulied to add new facts directly.

If more than one rule is found 10 be pnmed, some decision must be made about
which rule is to be fired first. If rules are stored and exarmned in scae fixed order, onc
stratcgy is to simply tire the first primed rule found and go on 10 the next. Note that in
the simplest case where new facts are simply being added w the fect base, a potential
live-lock situauon is encountercd. Once a rule is primed, it will always remain prirsed so
that it cun potentially fire repeatedly. One restrictive way to hindle this casc is to mark a
rule as "fued” 50 as to pievent its re-ining. Howevel, there aie circomstances where at
least limited rule re-firings might be meaningful, cspecially rules involving facts which
refer to variable quantitics. Such variables can have different values over e so that
rules which rcfer to thewn may be nitially unprimed, but may te pnmed later when a

Reusability Libsary Frumework AdaTAl 08 Juae 1990

AdaTAU User’s Manuul 83

variable’s value changes. The use of rules which refer to variables alse introduces the
necessity for truth maintenance (see below).

Another useful strategy is to assign weights (e.g., integer values) to rules and to
examine them in decreasing order according to their weight. Rules with high weights are
understood to be important rules which should be examined early and fired if possible.
All rules could first be ranked by weight, then examined sequentially, with any fired rules
removed from consideration.

After one pass through the rules (weighted or not), the additio. of male conszguant
facts may cause other rules to become primed. Thus several wasses through the ruly fist
may be necessary before no further progress can be made.

Backward-Chained Inference

Backward-chaining occurs when a rule is examirizd Fack 1o fiont, ie., the cons-
quent fact(s) is(are) checked against the fact base firse. Beckward-chaining is oiter, tsed
when the inference process is directed via interaction viith @ user who stawes a face that
she or he wishes to deduce. The user has thus posed a guery 1o ihe infecence system.

The system, after first checking for the occuitence of the desivad fact in the fact
base, will look for rules in which the desired fact is present as a conseguent. 1f such a
rule is found, the antecedents of this rule gencrate new queries for facts that must be
verified subsequent to the answering of the initial query. These facts are cnecked analo-
gously to verify them according to the cuurvat siate of the ot bage, If all of (L ininz]
query’s antecedent facts are found, the dusived fact has beern verified and the user’s query
has been answered. If working backwatds in this fushios duwes not answes the query,
other rules in the rule base are examined in search of anoiler one vihose cousequents
include the desired fact and the deduction process continues. After uo more candidate
rules can be found, the inference proces: ends with the: result that the desired fact could
not be verified.

Note that the consequent(s} of rules which ar: verified ay purt of this process are
typically not added explicitly 1o the tact base. However, backwird-chairing sysiem: can
be programmed to run in a stand-alon {ashicn and in this cuse, intermeduaie fucts can be
added to the tact base. One moditied torm of a g2ewial backewvar d-chaming suategy is to
first look for rules whose antecedent; are all imicully present in the fact base. Here an
initial forward-chaining wfereace pess may oo followed by succeeding posses wlich
operate in a direct backwe.rd-chainu.g fashion. Once ugain, rules can be weighied so that
morc "important” rules reay be cliecked cuxly in the infertinee piceess.

Monotonic vs. Non-Vonotenlc hiferenc.:

In the previous discussion, fuct poocessing with rules wis limited to the aqaition of
new facts to the fact base. Such (a infeence sysiem is called p monotonic inferene sys-
tem. The fact base uinder a 1onoionic infovencing, package cuan only grow Warger.

In many applicauons that tnuss model real world vepresentation and manipulation of
infornacion, there is & need 10 handle the deleuon (and modification) of facts as weli as
their addition. Isference systany which support the retaction of information ae called
non monotonic systems. Rules can themselves be equipped with renract listy as part of
tiie conscquens clause of a 1u'e ay well as assert Lists which cuntadn those facts whick aie

Reusubllity Library Frawmenurk AdwTAU 05 Juue 19

Gﬂ'ﬂ' o

&

AdaTAU User’s Manual 84

to bc added to the fact base. In this case, if the rule is primed, the members of the retract
list maust be deieted from the fact base.

Troth Maintenance

When facte are deleted, the effect of deletions can ripple through the fact base with
tne efrect that the conclusions of rules which were fired because of the presence of cer-
tain premise facts can now be considered to be invalid. The facts added to the fact base
as a resuic of these now invalidated rules should themselves be withdrawn. This process
contimiies with severdl 1asws inrough the fact base necessary to bring the fact base into a
consister.: state,

Trih Moistenanie is that psrt of the inferencing system that manages the con-
sistenicy of the. riotmason within the fact oase. An elementary example of truth mainte-
nance: is @ chieck that for single-veiced attcibutes, only a single fact using this attribute
can te pavt ol the faur base w aiv given time. For example, both of the facts
<wrinter_indicara_lite, on> and <prinwei_icdicator_lite, off> cannot be simultaneously
part of the facc base. Mulh-velueh attributes st still be permitted. Strictly monotonic
inferencing systcms esszotelly riquize 1¢ tth maintenance component, and depending
on the nature and generalivy of the fact base, non-monotonic inferencing systems can
reguire very complicatec truth mainterarce subsystems. For example, in the non-
ruonotenic version of Ad«TAU, asserting, fac s regasling single-valued attributes should
automatically trigger the retractivn of any ¢arlier value for such attributes; i.e., wie value
musi De updacd. Alswo, Tacts asserted usipg Tuics thi: refer ©o variabies may need 10 be
withdrawn as a cansxquence of 2 change to the visnable’s valuc.

7.4. GLOSSARY

Agendys -- An agenda is & weighied list of pending (ucstions the system desires ths user
to answer. Such questions involve facts taat the system canuot deduce directly.

Antecedent — The antecedent refers to the “if” part of nrule.

Ask — That part of AdaTAU which osks questiors. The guesuony are taken from the
agenda.

Asseri Lists — An assert list is the list of facty, in die ¢onequent of a 1ule, which are to
e added te the fact bas: hen the rule lucs.

Backward-Chining -- Buckward chaining is a foun of inferencing. With backward
chamnmg, the rtule contining a conscqguent to be proven is exaniined. 1f all the
preaiises in the anweedent are uuc, Cic cunseyuent has been proven, It all the
premises we uot wue, then rules which have those premises as conscquents e
cxanuined. Antsoon.

Reusubllity Libsary Framnewus b Adwl AU 08 June 1990

AdaTAU User’s Manuai 85

Conclusions — The consequents of a rule are aiso referred to as conclusions.

Consequent — The consequent refers to the *“then” part of a rule.

Fact — A fragment of knowledge, represented in a standard form. The pair
<compiled,yes> might represent that a code unit being tested had been success-
fully compiled.

Fact Base — A collection of facts.

Fire - A primed rule is said to fire, when its consequents are added to the fact base.

Forward-Chaining ~ Forward-chaining is a form of inferencing. With forward-
chaining, all rules are examined in turn. If a rule is found which has all of its
premises true, it is fired and the resulting consequent facts are added to the fact

base. This sequence is repeated until no more rules can fire.

FRules — FRules, or Focus Rules, are used to guide the focuser on its tour of investiga-
tors.

Inferencing — The process of using existing facts and existing rules to deduce new facts
is called inferencing.

Investigators — Investigators are the individual components of AdaTAU. Each investi-
gator can be viewed as a ininiature expert sysiem.

IRules — IRules, or inference rules, are those rules whose consequent contains facts to be
added to the fact base.

Primed — When all of the conditons in the antecedent of a rule are true, the rule is said
to be primed.

Premise -- A tact which corresponds to the antecedent of a rule is called & premise of the
rule.

QRules — QRules, or guestion rules, are those rules whose consequent contains questions
10 be added 1o the agenda.

Query — A question posed by the user to the system. A query is often associated with &
backwaid chaining systeni.

Monotonic - A monotonic system is one where fucts may only be ndded to the fuct base.

Non-Monotonlc ~ A non-monotonic systent is one where facts may be deleted from, as
well added to, ke fact buse.

Retruct Lists — A scuact list is the list of facts, in the consequent of a rule, which are to

Rewsabllity Libiary Yramewurk AduT1 AU 08 June 190

AdaTAU User’s Manual 86

be deleted from the fact base when the rule fires.

Rule — A rule describes when the fact base may change. When the conditions in the “if”
part of the rule are true, the “then” part of the rule is added 1o the fact base.

Rule Base — A coliection of rules is referred to as a rule base.

Think — Th: part of AdaTAU which processes rules. It decides which facts are 10 be
added to the fact base and which questions are 10 be added to the agenda.

Truth Maintenance — When a fact is deleted from a fact base, in a non-monotonic sys-
tern, other facts which rmay have depended on that fact must also be deleted.
This process of keeping the fact base consistent is called truth maintenance.

Update —~ That part of AdaTAU which processes the answers to questions and adds what-
ever new facts that result from the questions to the fact base.

Rewsubllity Libiar y Framewurk AdaTAY 08 Junc 1990

AdaTAU User s Manual A-1l

APPENDIX A: RBDL Syntax and Summary

This appendix contains a description of the Rule Base Definition Language (RBDL). After
an overview of the BNF variant used o describe RBDL, individual language featurcs are
presented syntactically, with each syntactic description followed by a short summary of the
seraantics of each feature. Following the description of the individual features, the appendix
closes with a complete syntactic summary and an extended example.

A.l1, Extended BNF (EBNF) Meta-Symbeols

The syntax of the language is described using an extended BNF. The notation used is the same as
the notation used throughout the Ada LRM. A brief descripticn is given below. For a complete
description see section 1.5 of the LRM.

e lower case_word
nonterminal (¢.g. adanet__spec).

ebold face_word
language token (e.g. begin).

e {item)}
braces enclose item which may be repeated zero or more times.

o [item]
brackets enclese optional item,

eiteml | item2
aliemation; either item1 or iten2

A.2. RBDL EBNF and Semantics

A.21. AdaTAU Specification

Syntax

adatau _spec ::=
local_inferencer_definition

Semantizs

RBDL is an application specific langnage used 10 generate the svurce for an Ada software com-
ponent called a distribited inferencer base. A distribuicd inferencer base consists of onc or more
inferencers, which under contrel of an external application program, operate on local fact bases
and communicate through the use of declared fact paramcters. Al fact parameters are consistent
with & single global fact basc schema.

The input to the KBDL processor is an AdaTAU spec. A local AdaTAU spec defines a fact base

scicme, the inidal valuc of the sharcd fact base, a set of rule bases, an optivnal fact paranmicter

declaration that describes how information is to be shared 2mong inferuncers and an inferencer,

A fact basc scheina definition determings the set of valid facts. All tacts introduced by the initial
fact base definition and the nule basc definitions must be consistent with the fact base schema.
Fact parameter, must alsy be consistent with a corresponding fact base schiemna,

Reusabllity Librury kramework AduTAY 68 Junc 1990

o

AdaTAU User’'s Manual A-2

A.2.2. Local Inferencer Definition

Syntax

lecal_inferencer_definition ::=
factbase_schema_def
[local_inference_ schema_def]
initial_factbase_def
rule_base_definition_part
inferencer_def

local_inference_schema def ::=
fact parameters is
[import_list] [export_list]
end fact parameters ;

export_list ::=
exports : (param description list) ;

import_list ::=
imports : (param description_list) :

Ha~alll Usot-L 4

param_description
| param_description , param description_list

aram_description_list ::=

param_description ::=
identifier => optional
| identifier => mandatory
| identifier => default
| identifier => focal

rule_base_definition_part ::= {rule_base_definition}

rule hase definition ::=
irulebase_def

| question_base_def
I grulebase_def
| frulekbase def

Semantics

A local fact basc schema establishes the shape of facts that may be installed in the local fact basc.
If the local inferencer is 1o participate in 2 distributed sct of infercncers, it commudnicates with
other inference bases through the usc of fact paramcters. Incoming facws correspond to fact atiri-
butes listed in the import list. Qutgoing fact possibilitics are identificd by fact aitributes on the
expont list. Fact parameters are ciassificd according to their assumed behavior. Optional parame-
ters are thosc attributes for which the inferencer to which focus has passed may (but need not)
reczive a value from the previous inferencer. Mandatory paramcicrs must have corresponding
valucs when entry into the destination inferencer occurs. (Note that the initial fact base may be
used o provide vaiucs for such mandatory fact attributes.) Default parwncters will be equipped
with a valuc when the destination inferencer is reached cven if the previous inferencer did not

Reusabllity Librury Framework AduTAU 08 June 1990

AdaTAU User’s Manual A-3

pass a value. Focal parameters provide values associated with the act of performing an inference
context switch. Such values may override facts that were present in the fact base of the previous
inferencer.

The initial valuc of a local fact base is given by a fact base definition. The inference rules and the
question rules which are applied by the inferencers are defined in the rule base definition part. A
rule base is a named coilection of either imules, frules or qrules. An inferencer has access to at
most one of each type of rule base.

The definition of 2 qrule basc may be preceeded by the the definition of a question base. A ques-
tion base contains the questions which are asked during the processing of grules. Each question
in a guestion base has a name. Each qrule base is associated with exactly one question base,
however multiple grule bases may be associated with the same question base. Each grule in a
grule base exgplicilly names a question in the associated question basc. If an AdaTAU spec
defines any grule bases, then there must be at least one question base defined. If a grule base is
not preceded by a question base, then it must be associated with a question base introduced by
another qrule base definition.

A.2.3. Fact Base Schema Definition

Syntax

factbase_schema_def ::=
fact base schema identifier is
fact_schema def
{fact_schema_def}
end [identifier] :

fact_schema_def ::=
attribute_name_list : attribute type [attribute_value_list] :

attribute_name list ::= attribute name {, attribute_name}
attribute_type ::= some _of | one_of | any | reference

te valuc list ::= (attribute value {, attribute value)l)

Semantics

A fact base schema is a collection of fact schemas. A fact schema defines a set of values which
can be associated with an attribute name,

If the attribute name list coniains more than on¢ name, it is equivalent to a sequence of fact
schema definitions, such that each definition contains a single atiribute name from the original
lisi. An attribute name may only appear once in a fact base schema definition.

If the rescrved word SOME_OF or ONE_OF appears in the definition ther: an attribute value list
must be provided. If the reserved word ANY appears in the definition then an attribute value list
is not permitted. Likewise, if the reserved word REFERENCE appears in the definition then the
corresponding attribute names refer to files that contain the complete text of tic corresponding
**fact value’’. No corresponding value list is permitted in this case as well.

The fact base schema is used to check the validity of facts introduced by other definitions, Any
fact which is used in an AdaTAU specification must be consistent with the fact base schema in

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manusl

e the following ways: (1) the fact's attribute name must be in the fact base schema, and (2) the
fact’s value must be one of the allowable values defined by the fact schema definition for the
aitribute name. If an identifier appears at the end of a fact base schema definition, it must repeat
the fact base schema name.

A.2.4. Factbase Definition

Syntax

injitial_factbase_def ::=
initial fact base identifier is
fact _list ;
end [identifier] ;

fact_list ::= null | fact {, fact}

Semantics

An initial fact base definition defines an initial value of the local fact base. All facts in the fact
list are checked for consistency with the fact base schema. If an identifier appears at the end of a
fact base definition, it must repeat the fact base name.

@ A.2.5. Irulebase Definiticn

Syntax

irulebase_def ::=
irule base identifier is
irule_def {irule_def}
end [identifier]

irule _def ::=

irule identifier is
antecedent : antecedent_fact_list ;
consequent : consequent_fact_list ;
[justification]

end irule ;

antecedent_fact_list ::= fact {, fact }
consequent_fact list ::= gen_fact_list

gen_fact_list ::=
fact
| = fact
| gen_fact_list , fact
! gen_fact_list , - fact

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Manual A-§

° justification ::=

justification : text_block ;

Semantics

An irule base definition defines a named collection of inference rules. Each inference rule is
defined by an irule definition. An irule base is used by an inferencer. If an identifier appears at
the end of an irule base definition, it must repeat the name of the irule base.

Each fact list in an irule definition must consist of facts which are consistent with the fact base
schema.

A.2.6. Questionbase Definition

Syntax

question_base_def ::=
question rase identifier is
question_def {question_def}
end [identifier] ;

question def ::=
_ gquestion identifier is
S text : text block ;
type : quest_attribute_type ;
[possible_responses]
end question ;

quest_attribute type ::= some_of | one_of | any

possible responses ::=
responses : response_list

response_list ::= response {response}

response ::=
response_display {| response_display]}
=> gen_fact_list ;

response_display ::=~ string

Semaniics

A question base definition defines a named collection of questions which may be referenced by
the grules in a grule base. If an identifier appears at the end of a question base definitior, it must
repeat the question base name.

A question definition defines a question and intr «duces a name for it. Each fact in the response
assert fact list must be consistent with the fact base schema.

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual A-6
0 A.2.7. Qrulebase Definition

Syntax

qrulebase def ::=~
! grule base identifier (question_base_identifier) is
qrule_def {qrule_def)
end [identifier]

qrule_def ::=
grule identifier is
antecedent : antecedent fact_ list
question : question_identifier ;
weight : weight ;
{justification)]
end grule :

question_base_identifier ::= identifier
question_identifier ::= identifier

weight ::= number

0 Semantics

A grule base definition defines a namned collection of question rules. A grule base definition
names the question base it is associated with. Each qrule must name a question defined in this
base. If an identifier appears at the end of an grule base definition, it must repeat the name of the
qrule base. Each qrule in a qrule base is defined by a qrule definition.

A.2.8. Frulebase Definition

Syntax

frulebase_def ::=
frule base identifier is
frule_def {frule def}
end [identifier] ;

frule def ::=
frule identifier is

antecedent : antecedent_fact_list ;
export : export_fact_list :
focus : inferencer_id ;

weight : weight ;

[justification]
end frule ;

e inferencer_id ::= identifier

Keusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Munual A7
export_fact_list ::= fact_list

Semantics

The inferencer_id named in an frulc must comespond to an inferencer defined in another RBDL
inferencer specificatior F- s in the export_fact_list ar: added to the fact base just before an
inference context s...ch is processed to support fact parameter processing. A frule base
definition defines a named collection of focus rules. If an identifier appears at the end of an frule
base definition, it must repeat the name of the frule base, Each frule in a frule base is defined by a
frule definition.

A.29. Inferencer Definition

Syntax

inferencer_def ::=
inferencer identifier :is
[irule_base specification]
[grule_base specification]
[frule_base specification]
end [identifier] ;

irule_base_specification ::=
irule base : ident ;

qrule_base_specification ::= i
grule base : ident ;

frule_base_specification ::=
frule base : ident ;

[o) P

SEmantics

An inferencer definition defines an inferencer. It specifies the name of the irule base. frule base
and the grule base to be used. If an identificr appears at the end of an inferencer definition, it
must repeat the name of the inferencer.

A.2.10. Fact

Syntax

fact ::= (attribute_neme , attribute_value)

attribute name ::= identifier | string

attribute value ::= identifier | string | number

Reusability Librery Fran. _work AdaTAU 08 june 1990

AdaTAU Usger s Maaual A-8

Senuantics

A fact consisis of an attribute name and an attribute value. The attribute name must appear in the
fact base schema. The attribute value must be an allowaole value for the attribute name, as
defined by the fact schema for the atiribute name.

The actual representation of an attribute name and valuc is a string. For convenience identifiers
and numbess are also allowed syntactically. If the aliemate forms {identifier or number) are
given, they are converted to strings by the RBDL processor, enclosing the actual text in quotes.

A.2.11. Lexical Elements

Syntax

identifier ::= letter {funderline) letter_or_digit}
letter ::= upper_case_letter | lower case_ letter
number ::= digit {digit}

string ::= "{graphic_charactex}"

text_block ::=~ left_brace {graphic_character} right_brace

Semantics

identifiers, numbers and strings must be fully contained on a single line. ‘Text_blocks are allowed
to span tnultiple lines. Moreover, identifiers and number must be separated from each other by at
least one separator, A separator is either a space characier, a tab character, or an end cf line.

A.3. RBDL EBNF Syntax Summary

The following is a summary of the EBNF descripiion of the RBDL syntax. Tenas are intro-
duced in depth-first fashion.

adatau_spec ::=
local_inferencer_definition

factbase_schema_def ::=
fact base schema identifier is
fact_schema_def
{fact_schema_def}
end [identifier]

fact_schema def ::=
attribute_name_list : attribute_ type [attribute_value_list] ;

attribute_name_list ::= attribute name {, attribute_ name}
attribute_type ::= some_of | one_of | any | reference

attribute_value list ::= (attribute_value {, attribute_value})

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User s Manual A9

local_infevencer_definition ::=
factbagse_schema_def
[local_inference_schema_det]
initial_factbase def
rule_base_definition_part
inferencexr_def

local inference_schema_def ::=
fact parameters is
[import 1list] [export_list]
end fact parameters :

export_list ::=
exports : (param description_list) ;

import_list ::=
imports : (param description_list)

param_description_list ::=
param description
i param description , param description_list

param _description ::=
identifier => optional
| identifier => mandatory
| identifier => default
| identifier => focal

il

rule_base_definition_part ::= {rule_base_definition}

rule_base definition ::=
irulebase_def

| question_base def
| grulebase def
| frulebase_def

initial_factbase_def ::=
initial fact base identifier is
fact_list
end [identifier] :
irule_def ::=
irule identifier is
antecedent : antecedent_fact_list ;
consequent : consequent_fact_list ;

[justification]
end irule :

antecedent_fact_list ::= fact {, fact }

consequent._fact_list ::= gen_fact_list

Reusability Library Framework AdaTAU 08 June 1990

-~

AdaTAU User 's Mauual A-10

gen_fact_list :i:i=
fact
' - fact
| gen_fact_list , fact
! gen_fact_list , "~ fact

weight ::= number

justification ::=
justification : text_block

fact_list ::= null | fact {, fact}

iruleLase_def ::=
irule base identifier is
irule_def {irule_def}
end [identifier] ;

question_base def ::=
qguestion base identifier is
question_def {question_def}
end [identifier] ;

question _def ::=
question identifier is
text : text block
type : quest_attribute type :
[possible responses]
end question;

quest_attribute_type ::= some_of | one_of | any

possible responses ::=
responses : response_list

response_list ::= response {response}

response ::=
response_display {| responsc_display}
=> gen_fact_list ;

response_display ::= string

grulebase_def ::=
grule base identifier (question_base_ identifier) is
grule_def {qrule_def}
end [identifier) :

question_base_identifier ::= identifier

Rensability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manusl A-11

qrule def ::=
qrule identifier is
antecedent : antecedent_ fact_list

question : question_identifier
weight : weight ;
[justification]

end grule ;
question_didentifier ::= identifier

frulebase_def ::=
frule base identifier is
frule_def {frule_def}
end (identifier] :

frule def ::=
frule identifier is

antecedent : antecedent fact_list
export : export fact_list
focus : inferencer_id ;

weight : weight ;

[Jjustification]
end frule ;

export_fact_list ::= fact_list
inferencer_id ::= identifier

inferencer def ::=
inferencer identifier is
[irule_base_specification]
[qrule_base_specification]
[frule_base_ specification]
end [identifier]

irule_base_specification ::=
irule base : ident ;

qrule_base_specification ::=
grule base : ident ;

frule_base_specification ::=
frule base : ident ;

fact ::= (attribute_name , attribute_value)
attribute_name ::= identifier | string

attribute _value ::= identifier | string | number
ident ::= identifier

identifier ::= letter {(underline] letter_or_digit}

letter ::= upper_case_letter | lower_case_detter

Reusability Library Framework AdeTAU 08 June 1999

AdaTAU User’'s Manual) A-12

e number ::=~ digit {digit}
string ::= "{graphic_character}"

text_block ::= left_brace {graphic_character) right_brace

Reusability Library Fysmcwork AdelaU 62 June 1950

AdaTAU User’s Manual B-1

APPENDIX B: RBDL Extended Example -

ey = e e 8 s o et o Disclaimer =-==—w—mcwmrc e cacm e ccacncmma— e —=-

-~ This software and its cdocumentation are provided "AS IS" and

-- without any expressed or implied warranties whatsoever. *
-- No warranties as tc performance, merchantability, or fitness)
-- for a particular purpose exist.

~-- In no event shall any person or organization of people be
-- held responsible for any direct, indirect, consequential .
~-- or inconsequential damages or lost profits. R

Fact base Schema Booch_Facts is
component_type : one_of (structure, tool, subsystem):
granularity : one_of (monolithic, polylithic);

structure_ i _e : one_of

(s\. .«&, ~.aeue, string, deques, rings, maps,
sets. L_.gs, lists, trees, grarhs, other):

¢ : cne cof
(utility, filter, pipe, sorting, searching,
pattern_matching, other);

determine_basic_props : one_of {(yes, no):
multiple_threads,

mutex_provided,

multiple_ readers,

static_size,

garbage_collection_provided,

controlled,

iterator provided: one_of (true, false);

forml : one_of (sequential, guarded, concurrent, multiple);
form2 : one_of (unbounded, bounded):
form3 : one_of (unmanaged, managed, controlled);
form4 : one_of (iterator, noniterator);
End Booch_Facts;
INITIAL FACT BASE init_fb IS -‘i;_
(determine_basic_props , yes):
END init_fb:
Question base Booch_Questions is

Question Ask_Component Type is
Text: {What is the component type?}:

Reusability Library Framework AdaTAU 08 June 1990

AdaTAY User’s Manual B-2

Type: one_of;
Responses:
"structure™ => (component_type, structure);
"tool" => (component_type, tonl);
"subsystem" => (component_type, subsystem);
End question;

Question Ask_Structure_Type is
Text: {What is the structure?};
Type: one_of;
Responses:
"stack" => (structure_type, stack;, (granularity, monolithic);
"string"=> (structure_type, stxing), (granularity, monolithic);
"queue” => (structure_type, queue), (granularity, monolithic):
"deque" => (structure_type, deque), (granularity, monolithic);
"ring™ => (structure type, ring), {(granularity, monolithicj);
"map" => (structure_type, map), {granularity, monolithic):
"set" => (structure_type, set), (granularity, monolithic);
"bag" => (structure type, bag), (granularity, monolithic);
"ligt" w=> (structure_type, list), (granularity, polylithic);
"tree" => (structure_type, tree), (granularity, polylithic);
"graph” => (structure_type, graph), (granularity, polylithic);
“"othexr" => (structuxe type, other);
End question;

Question Ask_Granularity is
Text:{1s the structure};
Type: one_of;
Responses:
*monolithic (parts are not individually accessible)”
=> (granularity, monolithic);
"polylithic ({parts are individually accessible)"
=> (granularity, polylithic):
End question;

Question Ask_Tool_Type is
Text: {Is the tool a}:
Type: one_of;
Responses:
"utiiity" => (tool_type, utility):
"filter" => (tool_type, filter):;
"pipe" => {(tocl_type, pipe):
"sorting tool"™ => (toocl_type, sorting);
"searching tcol"™ => (tool_type, searching):
"pattern matching tool" => (tool_ type, pattern matching):
"other" => (tool_type, other);
End Question;

Question Ask_About_Mult_Threads is
Text: {Are the semantics of the component preserved when
more than one thread of contrcl exists?};
Type: one_of;
Responses:
*yes" => (multiple_threads, true):
"no" => (multiple_threads, false):;
End Question;

Keusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual B-3

0 Question Ask_About Mut_Exclusion is .
Text: (Does the component guarantee mutual exclusion, or does .
the user have to ensure mutual exclusion}; E
Type: one of; AR
Responses: el
"mutual exclusion guaranteed" => (mutex provided, true); : 4
"user must provide mutual exclusion" => (mutex_provided, false):;]

End Question;)

Question Ask_About_Muit_Readers is =
Text: {Is it possible for more than one reader to have
simultaneous access to an object?}):
Type: one_of;
Responses:
"yes" => (multiple_readers, true):
"no" => (multiple_readers, false);
End Question;

Question Ask_About_Size is
Text: {Do objects that are part of the component have a size
that is static throughout the object’s life, or does
the size change dynamically?};
Type: one_of;
Responses:
"size is static™ => (static_size, true); e
"size changes dynamically" => (static_size, false); -

® End Question;

Question Ask_About_Gbg_Collection is
Text: {Does tha component take care of garbage collection?};
Type: one_of:
Responses:
"yes" => (garbage_collection rrovided, true);
"no" => (garbage_collecticn_provided, false):
End Question:

Question Ask_About_Controlled GC is
Text: {Is garbage collection provided even when multiple
tasks are accessing different objects in the component?};
Type: one_of;
Responses:
"yes" => (controlled, trxue);
"no" => (controlled, false);
End Question;

Questicn Ask_About_Iterators is
Text: {13 an iterator provided for this component?};
Type: one_of;
Responses:
"yes" => (iterator_provided, true);
"no" => (iterator_provided, false);
"not applicable" => (iterator_provided, false):
End Question;

e End Booch Questions;

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual B-4

grule base Booch_ Qrules (Booch_Questions) is

Qrule Get Component_Type is
antecedent: (determine basic_props, yes);
question: Ask_Component_Type;
weight : 5;
justification: {The first set of categories that components are
broken down into is structures (data objects or
classes of objects), tools (operations or collec-
tions of operations to be performed on some
structure), and subsystems (a larger abstraction
comprising several structures and tools).}:;
End Qrule;

Qrule Get_Structure_Type is
antecedernit: {(component_type, Structure);
question: Ask_Structure_Type ;
weight : 4;
Justification: {Structures are further broken down into these
general categories.};
End Qrule;

Qrule Get_Granularity is
antecedent: (structure_type, other);
question: Ask_Granularity ;
weight : 4;
justification: {Structures 3are also categorized as monolithic
or polylithic.};
End Qrule;

Orule Get_Tool_Type is
antecedent: (component type, tool);
question: Ask Tool Type ;
weight : 4;
justification: {Tools are further broken down into these
general categories.}:
End Qrule;

Qrule Multiple Threads is

antecedent: (determine_basic_props, yes):

question; Ask_About Mult_Threads;

weight : 3;

Justification: {Whether or not a component can support multiple

threads of control determines whether it is a

S strictly sequential component. or one of the
ELon other forms of non-sequential components. This
b question helps determine which of the first set
: of Booch’s forms the component falls into.};
End Qrule;

Qrule Mutual Exclusion is
antecedent: (multiple_threads, true):
question: Ask_About_ Mut_Exclusion;

weight : 2;
- ® justification: {(If a component supports multiple threads of
Lo control, then mutual exclusion becomes an issue.
S If mutual exclusion is not supported, then the

Reusability Library Framework AdaTAU 08 June 1990

AduaTAU User’s Manual B-5

component of the guarded type. This question
helps determine which of the first set of
Booch’s forms the component falls into.}:

End Qrule;

Qrule Multiple Readers is
antecedent: (multiple_ threads, true),
(mutex_provided, true);
question: Rsk_About_Mult_Readers;
weight : 2;
justification: {If a component supports mutual exclusion, then
the allowance of multiple readers becomes an
issue. If the component does not allow multiple
readers, then it is a concurrent component:
otherwise it is a multiple component, This
question helps determine which of the first set
of Booch’s forms the component falls into.};
End Qrule;

Qrule Size is
antecedent: (determine_basic_props , yes):
question: Ask_About_Size;
weight : 1;
justification: {The second set of Booch’s forms is concerned
with whether or not the objects in the component
are of bounded size. This question deteimines
whether the component is bounded or unbcurnded.}:
End Qrule;

Qrule Garbage_Collection is
antecedent: (static_size, false);
question: Ask_Abcut_Gbg_Collection;
weight : 1;
justification: {The third set of Booch’: forms is concerned
with whether or not garb.ge collection is
provided. This gquestion determines whether the
component is managed or unmanaged.}:
End Qrule:

Qrule Controlled GC 13
antecedent: (multiple_threads, false),
{(static_size, false),
(garbage_collection provided, true);
question: Ask_About_Controlled GC:
weight : 1;
justification: {If the component is sequential (supporting
only one thread), then the issue of whether or
not garbage coliection is provided even when
multiple tasks are accessing different objects
within the component. If so, then the component
is controlled.};
End Qrule;

Qrule Iterators is
antecedent: (determine_basic_props, yes);
question: Ask_hbout_Iterators;
weight : 0;

Reusability Library Framework AdsTAU 08 June 1990

AdaTAU User’s Manual B-6

justification: {The fourth set ¢f Booch’s forms is concerned

with whether or nut the component provides an
iterator for the objects in the component. This
question determines whether the component is an

iterator or noniterator component,};
End Qrule;

End Booch Qrules;

Irule base Booch_Irules is

Irule Form)_Sequenvia) is

antecedent: (multiple_threads, false);
consequent: (forml, segquential);
justification;:

{If the component does not support multiple
threads of control, then it is a sequential

component. This is one of the first set of

Booch'’s forms.}:;
End Irule;

Irule Forml_Guarded is

antecedent: (multiple_threads, true),

(mutex provided, false);
consequent: (forml, guarded):

justification: {If the component supports multiple threads of
control, but does not provide mutual exclusion,
then it i3 a guarde<d component. This is one of
the first set of Bocch’s forms.};
End Irule;

Irule Forml_Concurrent is
antecedent: {rmultiple threads, true},

(mutex_ provided, true),
(multiple readers, false);
consequent: (forxrml, concurrent);
justification: {(If the component supports multiple threads
control and mutual exclusion,
multipie readers simultaneous
a concurrent component. This
first ser of Booch’s forms.}:;

of
but does not allow
access, then it is
is cne of the

End Irule;

Irule Forml Multiple ic
antecedent: (multiple threads, true),

(mutex provided, true),

(multiple_readers, true);
congsequent: (forml, multiple):

justification: (If the component supports multiple threads of
control, mutual exclusion, and multiple readers,
then it is a multiple component. This is one of
the first set of Booch’s forms.});
End Irule;

Irxule Form2_ Bounded is

antecedent: (static_size, true);
consequent: (form2, bounded);

Reusability Library Framework AdaTAU

08 June 1990

AdaTAU User's Manual B-7

justification: {If all of the objects associated with the
component use the same amount of space
throughout their lifecycles (are of static
size), then the component is a bounded
component. This is one of the second set of
Booch’s forms.}:
End Irule;

Irule Form2_Unbounded is
antecedent: (static _size, false);
consequent: (form2, unbounded);
justification: {If some of the objects associated with the
component change their size during tneir
lifecycle, then the component is an unbounded
component. This is one of the second set of
Booch’s forms.}:
End Irule;

Irule Bounded_Managed is
antecedent: (form2, bounded);
consequent: (form3, managed):
justification: {If the component is bounded, then garbage
collection i3 not an issue, so the component is
clagsified as managed. This is one of the third
set of Booch’s forms.};
End Irule;

Irule Sequential_Urmanaged is
antecedent: (forml, sequential),
{form2, unbounded),
(garbage_collection_provided, false):;
consequent: (form3, unmanaged);
justification: {If a sequential, unbounded component does not
provide garbage collection, then it is an
unmanaged component. This is one of the third
set of Booch’s forms.}:;
End Irule;

Irule Sequential_ Managed is
antecedent: (forml, sequential),
(form2, unbounded),
(garbage_collection provided, true),
(controlled, false):
consequent: (form3, managed);
justification: {If a sequential, unbounded -omponent does
provide garbage ccllection, but only when one
task is accessing the componeat (not
controlled), then it is a managed component.
This is one of the third set of Booch’s forms.};
End Irule;

Trule Sequential Controlled is
antecedent.: {forml, sequential),
(form2, unbounded),
(garbage_collection provided, {rue),
(controlled, true):;
consequent: (form3, controlled);

Reusability Library Framework AdaTAU 08 June 1990

AdaTAU User’s Manual B-8

justification: {If a sequential, unbounded component does
provida garbage coliection, even when more than
one task is accessing different objects within
the component, then it is a controlled
component. This is one of the third set of
Booch’s formws.};
End Irule;

Irule Guarded Unmanaged is
antecedent: (forml, guarded),
(fcrm2, unbounded),
{(garbage collection_provided, false);
consequent: (form3, unmanaged);
justification: {(If a guarded, unbounded component does not
provide garbage collection, then it is an
unmanaged component. This is one of the third
set of Booch’s forms.};
End Irule;

Irule Guarded Managed is
antecedent: (forml, guarded),
{(form2, unbounded),
(garbage_collection provided, true):
consequent: (form3, managed);
juastification: {If a guarded, unbounded component does
provide garbage collection, then it is a
managed component. This is one of the third
set of Booch’s forms.},

R

End Irule;

Irule Concurrent_Unmanaged is
antecedent: (forml, concurrent},
(formZ, unbounded},
(garbage_collection_provided, false);
consequent: (form3, unmanaged):
justification: {If a c¢concurrent, unbounded component does not
provide garbage collection, then it is an
urnanaged componen*. This is one of the third
set of Booch‘s forms.):;
End Irule;

Irule Concurrent Managed is
antecedent: (forml, concurrent),
(form2, unbounded),
(garbage_collection_provided, true);
consequent: (form3, managed);
dustification: {If a concurrent, unbounded component does
provide garbage collection, then it is a
managed component. This is cne of the third
set of Rooch’s forms.}:

End Irule;

Irule Multiple_ Unmanaged is
antecedent: (forml, multiple),
{form2, unbounded),
(garbage_collection_provided, false):
consequent: (form3, unmanaged):

Reusability Library Framework AdaTAU 08 june 1990

AdaTAU User’s Manual B-9
{If a multiple, unbounded component does not

Justification:
provide garbage collection, then it is an
unmanaged component. This is one of the third

set of Booch’s forms.}:;
End Irule;

Irule Multiple Managed is
(forml, multiple),

antecedent:
(form2, unbounded),
{garbage_collection_provided, true):
consequent: (form3, managed);
{If a multiple, unbounded component does

Justification:
provide garbage collection, then it is a
managed component. This is one of the third

set of Booch’s forms.};
End Irxule;

Irvle Form4_Iteracor is
antecedent: (iterator_provided, true):
conseguent: (form4, iterator);
justification: (If the component provides an iterator for its
objects, then it 3is an iterator component. This

is one of the fourth set of Booch’s forms.}:

End Irule:;

Irule Form4_Noniterator is
(iterator_provided, false):;

antecedent:

consequent: (form4, noniterator);

justification: {If the component does not provide an iterator
then it i3 a noniterator

for its obhjects,
component. This
Booch’s forms.};

is one of the fourth set of

End Irule;

End Booch_Irules;

inferencer Booch_taxonomy is
irule base : booch_irules;
qrule hase : booch_qgrules;

end Booch_taxonomy;

AdaTAU 08 June 1990

Reusability Library Framework

[Barr81]
[Booch87]

[LRMS83]

[McDowell89]

[Simoc88]

[Solderitsch89]

[Wallnau88]

References

A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence,
Volume 1, William Kaufmann, Inc., 1981.

G. Booch, Softiware Components with Ada, Benjamin/Cummings Publishing
Company Inc, Menlo Park, California, 1987.

Reference Manual for the Ada Programming Language, United States
Department of Defense, February 1983. (American National Standards
Institute/MIL-STD-1315A-1983).

R. McDowell and K. Cassell, ‘“The RLF Librarian: A Reusability Librarian
Based on Cooperating Knowledge-Based Systems,’” Proceedings of RADC 4th
Annual Knowledge-Based Software Assistant Conference, Utica, NY,
Septer.iber 1989.

M. Simos, ‘‘The Growing of an Organon; A Hybrid Knowledge-Based
Technology and Methodology for Software Reuse,’’ Proceedings of 1988
National Institute for Sofiware Quality and Productivity (NISQP) Conference
on Software Reusability, April 1988, pp. E-1 through E-25.

1. Solderitsch, K. Wallnau, and J. Thalhamcr, ‘‘Constructing Domain-Specific
Ada Reuse Libraries,”” Proceedings of Seventh Annual National Conference
on Ada Technology. March 1989,

K. Wallnau, J. Solderitsch, M. Simos, R. McDowell, K. Casseill, and D.
Campbell, ‘‘Censtruction of Knowledge-Based Components and Applications
in Ada,”’ Proceedings of AIDA-88, Fourth Annual Conference on Artificial
Intelligence & Ada, November 1988, pp. 3-1 through 3-21.

